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Stochastic rotation dynamics. II. Transport coefficients, numerics, and long-time tails
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A discrete-time projection operation technique was used to derive the Green-Kubo relations for the transport
coefficients of a recently introduced stochastic model for fluid dynamics in a previous paper~Part 1!. The most
important feature of the analysis was the incorporation of a new grid shifting procedure which was shown to
guarantee Galilean invariance for arbitrary Mach number and temperature. This paper~Part 2! contains a
detailed analysis of the transport coefficients of this model. An exact calculation of the first terms in the stress
correlation function in the limit of infinite particle density is presented, which explicitly accounts for the cell
structure introduced to define the collision environment. It is also shown that this cell structure can lead to
additional contributions to the transport coefficients even at large mean free paths. Explicit expressions for all
transport coefficients are derived and compared with simulation results. Long-time tails in the velocity, stress,
and heat-flux autocorrelation functions are measured and shown to be in excellent agreement with the predic-
tions of mode-coupling theory.
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I. INTRODUCTION

In a previous paper, Part 1 of this series, a discrete-t
projection operator technique was used to derive the Gre
Kubo relations for the transport coefficients of a recen
introduced stochastic model for fluid dynamics with contin
ous velocities and efficient multiparticle collisions. It wa
also shown how random shifts of the collision environme
could be used to ensure Galilean invariance for arbitr
Mach number and temperature. In this paper~Part 2!, we
present a detailed analytical and numerical analysis of
Green-Kubo relations derived in Part 1. Several approxim
tions will be discussed in detail and compared with simu
tion results. The analytical calculations assume that the e
time correlations are those of an ideal gas, but no assu
tions are made regarding molecular chaos; the correlat
which can develop at small mean free path are explic
accounted for. The only other approximation we make is
neglect fluctuations in the number of particles in a cell. T
amounts to neglecting terms of the order ofe2M, whereM is
the average number of particles in a cell, and is theref
justified in all practical calculations, whereM>5.

Section II of this paper contains an analysis of the kine
contributions to the shear viscosity. An explicit calculation
the kinematic shear viscosity valid in the continuum lim
l/a→`, is presented in Sec. II A, and finite cell size~or
finite l/a) corrections are discussed in subsequent secti
In particular, it is shown in Sec. II B 4 that there are corre
tions proportional to (a/l)2 to the shear viscosity which re
solve previous discrepancies between theory and simula
for a'90° in two dimensions. An analysis of the rotation
~stochastic collision! and mixed contributions to the she
viscosity is presented in Sec. III. A simple approximate e
pression for the rotational contribution to the viscosity va
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in the limit of small mean free path is presented in Sec. III
while subsequent sections discuss the equal time contr
tions to the rotational and mixed stress correlations a
present a comparison with simulation results. In Sec. IV, i
shown that the bulk viscosity is zero for this model, and t
thermal diffusivity and self-diffusion constant are discuss
in Secs. V and VI, respectively. Results for the long-tim
tails in the stress correlation functions and correspond
transport coefficients are presented in Sec. VII and show
be in excellent agreement with the predictions of mod
coupling theory. The work is summarized in Sec. VIII.

II. ANALYSIS OF THE KINETIC CONTRIBUTIONS
TO THE SHEAR VISCOSITY

A. Continuum approximation, lÕa\`

The Green-Kubo relation for the viscosities is given
Eq. ~56! of Part 1 of this series, and the relevant reduc
fluxes are defined in Eq.~55! of that paper. Restricting our
selves to two dimensions, the shear viscosity is obtaine
we takek̂ in the y direction anda5b51, so that

n5
t

NkBT (
t50

`

8 ^I 2~ ŷ,0!uI 2~ ŷ,t !&. ~1!

For large mean free path, one expects contributions from
term proportional tok̂•Djj

s in Eq. ~55! of Part 1 to be neg-
ligible. Furthermore, forl/a→`, we assume thatDj jx can
be replaced bytv jx in the ensemble average; the validity
these approximations is discussed in Sec. II B of this pa
We therefore need to evaluateCn[^I 2( ŷ,0)uI 2( ŷ,nt)&,
whereI 2( ŷ,t)5( i 51

N v ixv iy . The evolution of the velocity of
particle i during a time step is described by

v ix~ t1t!5ujx~ t !1c@v ix~ t !2ujx~ t !#1s@v iy~ t !2ujy~ t !#

~2!
©2003 The American Physical Society06-1
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and

v iy~ t1t!5ujy~ t !1c@v iy~ t !2ujy~ t !#2s@v ix~ t !2ujx~ t !#,

~3!

with c5cos(a), s5sin(a), and uj5(1/M )(kPjvk , where
the sum runs over all particles in the cell occupied by part
i at t5nt. Consider first

C15(
i j

^v ixv iy@ujx1c~v jx2ujx!1s~v jy2ujy!#

3@ujy1c~v jy2ujy!2s~v jx2ujx!#&, ~4!

where vi[vi(0) and uj[uj(0). Using ^v iav j b&
5d i j dabkBT and^s&50, one finds that there are both dia
onal and off-diagonal contributions toC1. The off-diagonal
contribution comes from particlesj which are in the same
cell as particlei at t50. In this case,vj (t) has a ‘‘projec-
tion’’ on vi(0) through the mean cell velocity. One finds

^v ixv iyv jx~t!v jy~t!&5^v ixv iy@~12c!v ix2sv iy#@~12c!v iy

1sv ix#&/M252S kBT

M D 2

c~c21!.

~5!

The diagonal contribution is

^v ixv iyv ix~t!v iy~t!&5^v ixv iy@z1v ix1z2v iy#

3@z1v iy2z2v ix#&, ~6!

wherez151/M1c(121/M ) andz25s(121/M ). Perform-
ing the averages, one has

^v ixv iyv ix~t!v iy~t!&5~kBT!2z, ~7!

where

z5z1
22z2

25F 1

M
1cS 12

1

M D G2

2s2S 12
1

M D 2

. ~8!

Since there areM21 off-diagonal contributions, one finds

C15N~kBT!2@z1h#, ~9!

whereh52(M21)c(c21)/M2. Note that the leading diag
onal contribution isO(1), while that of the off-diagonal con
tribution is O(1/M ).

The behavior over longer-time intervals can be analy
in a similar fashion. ConsiderC2. Following the arguments
of the last paragraph, there is a diagonal contribution prop
tional to z2 and an off-diagonal contribution proportional
2hz, since at each time step,M21 particles become corre
lated with particlei, and particlej can become correlate
with particlei at either of the two time steps. Note, howev
that there are now additional—higher order—contributio
which arise, for example, when particlej becomes correlated
with particlek which then becomes correlated with particlei.
It is easy to see that these contributions carry additional
tors of 1/M and are thus of higher order than the diago
06670
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and direct off-diagonal contributions considered abo
However, these higher off-diagonal contributions can
summed in the geometric series

Cn /N~kBT!25@z1h#n'zn1nhzn211•••, ~10!

so that

n5kBT tS 1

2
1(

j 51

`

@z1h# j D
5

kBT t

2 S 1

~121/M !sin2~a!
21D . ~11!

For a590°, this result agrees, apart from exponentia
small O(e2M) corrections arising from fluctuations in th
number of particles in a cell, with the expression given
Malevanets and Kapral@1,2#. We have shown previously@3#
that the viscosity measured in simulations is much lar
than this value fora.90°. This discrepancy is resolved i
the following sections.

B. Lattice effects,lÕa finite

In this section we go beyond the continuum approxim
tion discussed in Sec. II A and consider explicitly the effe
of the cell structure used to determine the collision neig
bors. This is particularly important for small mean free pa
where neither the decay rate of the kinetic stress correlat
nor its dependence on the rotation angle is correctly
scribed by the continuum approximation. There are also c
ditions ~large M, a'90°) for which finite cell size correc-
tions are important, even for large mean free path. It
shown how accurate approximations for the transport coe
cients can be obtained in these cases even when the ass
tion of molecular chaos is not valid and where the details
the lattice structure are important. The resulting expressi
are shown to be in good agreement with simulation data,
therefore clarify the source of the shortcomings of the
proximations discussed in the Sec. II A.

In order to go beyond the continuum approximation wh
evaluating the Green-Kubo relation~1! for the shear viscos-
ity, we need to consider the full reduced fluxI 2( ŷ,t) given in
Eq. ~54! of Part 1 of this series. Explicitly,

I 2~ ŷ,t !52
1

t (
j

@v jx~ t !Dj jx~ t !1Dv jx~ t !Dj jx
s ~ t !#.

~12!

Correlation functions involvingDj and Djs therefore need
to be evaluated. In the following sections we consider th
terms, starting with equal time correlations.

1. Calculation of ŠDj i bv i «
m
‹

Assume, as in an ideal gas, that the probability distrib
tions for particle coordinates and velocities are decoup
and that the particles are homogeneously distributed
space. We proceed by first averaging over all particle po
tions at fixed velocities. For this purpose, all possible pro
6-2
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gation distancesv ib t of a particle~in b direction! are di-
vided into intervals of cell sizea. Averaging over the
particle’s spatial coordinate for fixed velocityv ib , the prob-
ability of a cell displacementDj ib5na is

pn5@v ibt2a~n21!#/a ~13!

if the velocity is in the interval (n21)a<v ib t,na. The
probability of a cell displacementDj ib5(n21)a is qn51
2pn . It is easy to see that̂Dj ibv i«

m&50 for bÞ«. For b
5«,

^Dj ibv ib
m &5a (

n52`

` E
(n21)a/t

na/t

w~v ib!v ib
m

3$npn1~n21!qn%dv ib , ~14!

wherew(v ia) is the Boltzmann distribution. Since

anpn1a~n21!qn5v ibt, ~15!

Eq. ~14! reduces to a single integral, and we have

^Dj ibv ib
m &5t^v ib

m v ib&, ~16!

so thatDj ib can be replaced bytv ib in averages that are
linear in Dj. We measured̂Dj ixv ix& in a simulation, and
found, in agreement with these results, that it is equa
tkBT within statistical error. Averages such as^(Dj ib)2&, on
the other hand, which are not linear inDj, need to be cal-
culated explicitly, since they differ from what would be o
tained by substitutingtv ib for Dj ib in the average.

2. Calculation of Š„Dj ix…
2
‹

For convenience, we omit the particle indexi in this sec-
tion. We also assume that the particle density is homo
neous and that the static correlation functions are those o
ideal gas, e.g.,̂v iar j b&50. Consider a particle that move
from positionr x5x0 to x01tvx in one time step. For fixed
vx , the probability thatDjx5na is

Pvx
~Djx5na!5

1

aE0

a

dx0Q~x01vxt2na!

3$12Q~x01vxt2@n11#a!%, ~17!

where we have averaged over the initial positionx0 of the
particle. For (n21)a<vxt,na, Eq. ~17! reduces to
Pvx

(Djx5na)5pn , where pn is given by Eq.~13!, as it
should.

Using Eq.~17!, we have
06670
o
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^~Djx!
2&5 (

n52`

` E
2`

`

dvxPvx
~Djx5na!~na!2w~vx!

5
1

aE0

a

dx0 (
n52`

` E
(na2x0)/t

[(n11)a2x0]/ t

~an!2w~vx!dvx ,

~18!

where

w~vx!5
1

A2pkBT
expH 2

vx
2

2kBTJ ~19!

is the Boltzmann distribution. The Poisson sum formula@4#

(
n52`

`

g~n!5 (
m52`

` E
2`

`

g~f!e22p imfdf ~20!

can now be used to transform Eq.~18! into

^~Djx!
2&5aE

0

a

dx0 (
n52`

` E
2`

`

f2h~f!e22p infdf,

~21!

with

h~f!5E
(fa2x0)/t

[(f11)a2x0]/ t

w~vx!dvx . ~22!

A partial integration with respect tof is next performed to
eliminate the integral inh(f). The resultingn50 term in
the sum in Eq.~21!, S0, is

S052
a2

t E0

a

dx0E
2`

` f3

3
$w@„~f11!a2x0…/t#

2w@~fa2x0!/t#%df. ~23!

The integrals can be performed to obtain

S05
a2

6
1t2kBT. ~24!

Consider now thenÞ0 terms in Eq.~21! and introduce
the quantityG52p in. Denoting this sum bySP , we have

SP5
a2

t (
nÞ0

E
0

a

dx0E
2`

` S 2
2

G2
2

2

G
f1

1

G D e2fGw0df,

~25!

where the propertye6G51 was used, andw05w(@fa
2x0#/t). Using

E
0

a

dx0E
2`

`

e2fGw0df50 ~26!

and
6-3
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E
0

a

dx0E
2`

`

fe2fGw0df52
t

2p in
exp@22p2n2~l/a!2#,

~27!

one finds the final result

^~Dj ix!2&5S01SP5a2F1

6
1S l

aD 2

2
1

p2 (
n51

`

3
1

n2
exp@22p2n2~l/a!2#G , ~28!

wherel5tAkBT is the mean free path. For small mean fr
path,l/a!1,

^~Dj ix!2&'alA2/p, ~29!

while for large mean free path,

^~Dj ix!2&' 1
6 a21l2. ~30!

Note that the small term;a2/6 in Eq. ~30! is absent in the
continuum approximation discussed in Sec. II A. We will s
later that this correction can, in certain cases, provide
dominant contribution to the viscosity.

These results for̂(Dj ix)2&/a2 are compared with simula
tion data in Fig. 1. The solid line is expression~28!, and the
dotted and dashed lines are plots of Eqs.~29! and ~30!, re-
spectively. As can be seen, the agreement is excellent fo
mean free paths. It can also be seen that the large mean
path approximation~30! is valid for l/a*0.4, and that for
small mean free path, Eq.~29! is accurate forl/a&0.4.

3. Calculation of ŠDj ixDj ix
s
‹

SinceDj ix does not depend on the random shift, we fi
determine the average ofDj ix

s over random shiftsd at fixed
particle coordinate and velocity,^Dj ix

s uX&d . For na<X[x0

1vxt,(n11)a,

FIG. 1. ^Djx
2&/a2 as a function ofl/a. The bullets are simula-

tion data obtained on a 64364 grid; the solid line is expressio
~28!; the dotted lines, approximation~29! for l/a!1; and the
dashed line is approximation~30! for l/a@1.
06670
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^Dj ix
s uX&d

5
1

aE2a/2

a/2

$Q~na2X2d!2Q~X1d2@n11#a!%dd

5$~n11/2!a2X%. ~31!

It follows that

^Dj ixDj ix
s &5

1

aE0

a

dx0 (
n52`

`

anE
(na2x0)/t

[(n11)a2x0]/ t H aS n1
1

2D
2@x01vxt#J w~vx!dvx . ~32!

As in the preceding section, we use the Poisson sum form
~20! and integrate by parts. The resultingn50 term is

T05
a2

12tE0

a

dx0E
2`

`

$~2f313f2!w1

1~22f313f2!w0%df, ~33!

with w05w(@fa2x0#/t) and w15w„@(f11)a2x0#/t….
Performing the integrals, one finds

T05
a2

12
. ~34!

The othernÞ0 terms are

TP5
a2

t (
nÞ0

E
0

a

dx0E
2`

` S 2
2

G2
2

f

G
1

1

2G D e2fGw0df,

~35!

where againG52p in. Using Eqs.~26! and ~27!, we find

^Dj ixDj ix
s &5T01TP5 1

2 @^~Dj ix!2&2l2#, ~36!

where^(Dj ix)2& is given by Eq.~28!. In the limit of small
mean free path,̂ Dj ixDj ix

s &;alA2/p), and for l/a→`,
^Dj ixDj ix

s &;a2/12.

4. Calculation of ŠDj iy
„0…v ix

„0…Dj iy
„1…v ix

„1…
‹ for aÄ90°

The following calculations are performed in the limitM
→`, so that we can use the simplified evolution equatio

v ix
(1)5cv ix

(0)1zsv iy
(0) ~37!

and

v iy
(1)5cv iy

(0)2zsv ix
(0) , ~38!

where c5cos(a), s5sin(a), and the numberz561 de-
scribes the stochastic nature of the rotation. A detailed inv
tigation for finiteM, and a discussion of the limitM→`, is
tedious and will be given elsewhere@5#. For a590°, the
case considered here, Eqs.~37! and ~38! reduce to

v ix
(1)5zv iy

(0) ~39!
6-4
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and

v iy
(1)52zv ix

(0) . ~40!

Given Eqs.~39! and ~40!, C15^Dj iy
(0)v ix

(0)Dj iy
(1)v ix

(1)& can be
written as

C152aE
0

a

dx0 (
n,m52`

` E
(na2y0)/t

[(n11)a2y0]/ t

dvy

3E
b0

b1
dvxnmw~vx!w~vy!vxvy , ~41!

where all velocities are at equal time, so that we ha
dropped the index(0). Note that the average overz561
has already been performed. The limits on the inner inte
are

b05@~m1n!a2y02vyt#/t ~42!

and

b15@~m1n11!a2y02vyt#/t. ~43!

If the integral overvx is performed, the sum overm can be
simplified, and one obtains

C152
a f

2r E0

a

dy0 (
n,m52`

`

nE
(na2y0)/t

[(n11)a2y0]/ t

dvyvyw~vy!

3exp~2rb0
2!, ~44!

wherer 51/(2kBT) and f 51/A2pkBT. Making the transfor-
mation v5vy2na/t1y0 /t, the limits of the integral over
vy become independent ofy0, and the integral overy0 can
be performed, yielding

C15
a f2t

4r 2 (
m52`

` E
0

a/t

dv exp$2r @~ma2vt!/t#2%

3 (
n52`

`

n@exp~2rc0
2!2exp~2rc1

2!#, ~45!

wherec05(na1vt)/t and c15@(n21)a1vt#/t. Simpli-
fying the sum overn yields

C152
a2kBT

2p E
0

1

dvF (
n52`

`

expS 2
a2

2l2
~n1v !2D G 2

.

~46!

The integral overv can be performed in conjunction wit
one of the sums to obtain the result

C152
kBTal

2Ap
(

m52`

`

expF2S an

2l D 2G , ~47!

which converges rapidly for small mean free path. The Po
son sum formula, Eq.~20!, can be used to obtain the expre
sion
06670
e
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C152~kBTt!2 (
m52`

`

expF2S 2pnl

a D 2G , ~48!

which converges rapidly for large mean free path.
From Eq. ~48!, it follows that C1→2(kBTt)2 for l/a

→`, which is the result obtained by replacingDjy by tvy in
the definition ofC1. This result suggests that this might als
be true for correlations at larger time, i.e., forCn , n.1.
Simulations confirm this hypothesis forl/a*0.4, see Fig.
9~a!.

Figure 2 contains a comparison of the normalized cor
lation function C1 /(tkBT)2 with simulation data fora
590°. The agreement is very good for all mean free pa
The small deviations arise from the fact that the results
this section were derived in theM→` limit, while M535 in
the simulations. Equation~8! suggests that the correction fa
tor is approximately (122/M ).

Since^(Djxvy)
2&5^Djx

2&(l/t)2, the results of this sec
tion predict that the initial decay rate of the stress corre
tions,g[C1 /^(Djxvy)

2&, is given by

g5H 21/@11a2/~6l2!# for l/a@1,

21/~2A2! for l/a!1
~49!

in the limit M→`. In the continuum approximation, fo
l/a→`, it follows that g521, which corresponds to zer
viscosity. For finitel/a, however,ugu,1 and the viscosity is
finite. Figure 3~a! shows the predicted dependence ofg on
the mean free path.

For the large mean free path, the only significant diff
ence between the continuum approximation~discussed in
Sec. II A! and the calculation presented here occurs in tht
50 contribution,

FIG. 2. The dimensionless kinetic stress correlation funct
C1 /(kBTt)2, where C1[^Djy

(0)vx
(0)Djy

(1)vx
(1)&, as a function of

l/a. The bullets are simulation data; the solid line is the analyti
expression fora590° andM→`, Eq. ~47!. The dotted line is the
small mean free path approximationC152kBTal/(2Ap), and the
dashed line is the large mean free path approximationC15
2(kBTt)2. Simulation parameters:M535, a590°, kBT54, L
564.
6-5
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C0[^I 2~ ŷ,0!uI 2~ ŷ,0!&'
1

t2 (
i j

^v ixDj iyv jxDj jy&

5
NkBT

t2 ^~Djy!2&, ~50!

to the shear viscosity. There might be additional 1/M correc-
tions arising from the cell structure, but they must be prop
tional to some power ofa/l, since they must vanish in th
continuum limit,a/l→0. We will therefore neglect them fo
the moment. Using the large mean free path limit, Eq.~30!,
for ^(Djy)

2& in Eq. ~50!, it follows that there is an additiona
contribution to expression~11! for the shear viscosity de
rived in the continuum limit in Sec. II A, so that

n5
kBTt

2 S 1

~121/M !sin2~a!
21D1

a2

12t
. ~51!

For a590°, this equation can be written as

n5
kBTt

2 H 1

M21
1

1

6 S a

l D 2J , ~52!

so that at finitea/l, corrections are important for

FIG. 3. Plots of analytic expressions for the initial decay rate
the kinetic stress correlations,g[C1 /C0. ~a! g as a function ofl/a
for a590° andM→`. Note the plateau forl/a'0.25 and the
subsequent rapid decrease ing. ~b! g as a function ofa. The solid
line is a plot of Eq.~59!, which describes the behavior forl/a
!1. The dashed curve is the continuum result,g5cos2(a), valid
for l/a→` and largeM. Here and in the following all angles ar
measured in degrees.
06670
r-

M.116~l/a!2. ~53!

In most applications in two dimensions,a590°, l/a*1,
and 5&M&50, so that this correction is practically nev
negligible. Note, however, that this is true only in two d
mensions and fora'90°, where kinetic stress correlation
oscillate and decay extremely slowly. It was previously b
lieved that high Reynolds numbers could be achieved in
limit by choosing a large value of M in order to have a sm
viscosity. It is now clear, however, that this is problematic f
two reasons. First, the minimum value for the viscosity
a2/(12t), and not zero, forM→`, and second, this is a
pathological limit since the kinetic stress correlations os
late in sign and do not decay.

In order to verify the dependence on 1/(M21) in Eq.
~52!, we performed a series of simulations at fixed lar
mean free path,l/a52, and plotted the kinetic part of th
viscosity as a function of 1/(M21). The result is indeed a
linear curve, Fig. 4, which can be fitted by 2nkin /(kBTt)
51.06/(M21)10.0473. Equation~52! predicts 1/(M21)
10.0417, which is very close. Consider now the effect o
finite mean free path at fixedM. In Fig. 5,nkin is plotted as
a function of l/a. In particular, we want to investigat
whether the second term in Eq.~52! is indeed proportional to
(l/a)2. The fit in Fig. 5 gives (1/5.141)(l/a)1.9988 for this
term, which is again in good agreement.

Figure 6 shows measurements of the normalized visco
at large and small mean free paths as a function of the r
tion angle. It can be seen that Eq.~51! is in excellent agree-
ment with the data around 90°. In contrast, without the c
rection term, the agreement is much worse; see Ref.@3#.
Figure 7 shows the total viscosity as a function of mean f
path.

5. Calculation of ŠDj iy
„0…v ix

„0…Dj iy
„1…v ix

„1…
‹ at arbitrary angle,

lÕa™1

Consider again the limitM→`, but now for arbitrary
scattering anglea, so that collisions are described by Eq

f

FIG. 4. The dimensionless kinetic contribution to the viscos
2nkin /(kBTt), as a function of 1/(M21) for a590°. The symbols
are simulation data, and the solid line is a fit with 1.06/(M21)
10.0473. The agreement with the predicted behavior, Eq.~52!, is
excellent. Parameters:l/a52, L564, kBT54.
6-6
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~37! and ~38!. Only the limit l/a!1 will be considered in
this section, so thatDjy can only take the values2a, 0, and
a. The case of arbitrary mean free path will be conside
elsewhere@5#.

For l/a!1, there are only two contributions toC1

5^Dj iy
(0)v ix

(0)Dj iy
(1)v ix

(1)&. In the first, which we denote by
A1,21 one hasDj ix

(0)5a and Dj ix
(1)52a; in the second,

A21,1, Dj ix
(0)52a andDj ix

(1)5a. Other possibilities are ei
ther identically zero—if one of theDj is zero—or occur with
an exponentially small probability@;exp(2a2/l2)#, since
they involve particles traveling distances of the order ofa.

Consider firstA1,21. In order forDjy
(0) to be equal toa,

vy
(0) must be positive; becausel/a!1, it is also less than

a/t. Similarly, in order thatDjy
(1)52a, we need2a/t

,vy
(1),0. A particle with uvy

(0)u>uvy
(1)u will contribute to

A1,21 if it is located in the interval (yL[a2vy
(0)t,yU[yL

FIG. 5. 2nkin /(kBTt)21/(M21) as a function ofl/a for a
590°. Symbols are simulation data, and the dashed line is th
0.1945(l/a)f, with f521.9988. There is good agreement wi
the predicted (l/a)2/6 behavior. Parameters:M535, L5128.

FIG. 6. Dimensionless shear viscosity measured at short ti
as a function of the rotation anglea. The bullets are results fo
n t/a2 at the small mean free path,l/a50.028. The solid line is a
plot of Eq. ~71!. The inverted triangles are data forn/(kBTt) at
large mean free path,l/a52. The dashed line is a plot of Eq.~51!.
The system size is 64364 andM535.
06670
d
2vy

(1)t). Similarly, if uvy
(0)u<uvy

(1)u, it contributes only if it is
located in the interval (yL5a2vy

(0)t,yU5a). The probabil-
ity that a particle in a given cell contributes toA1,21 is there-
fore

p1,215
t

a
min~vy

(0) ,2vy
(1)!. ~54!

Using Eqs.~37! and ~38!, and the restrictions 0,vy
(0),a/t

and2a/t,vy
(1),0, we have

A1,2152a2E
0

a/t

dvyE
d0

d1
p1,21dvxvx@cvx

1svy#w~vx!w~vy!, ~55!

where superscripts (0) have been dropped. Equation~55! is
written for z51; the final result derived below is the sam
for z521. The limits on the integral are

d05cvy /s ~56!

and

d15~a/t1cvy!/s, ~57!

where, as before,c ands are the cosine and the sine of th
rotation anglea, respectively. Finally, if Eq.~54! is used, we
find

A1,2152atE
0

a/t

w~vy!dvyH E
d0

d2
w~vx!vx@vxvy~s22c2!

1cs~vx
22vy

2!#dvx1E
d2

d1
w~vx!vxvy

3@cvx1svy#dvxJ , ~58!

fit

es

FIG. 7. Dimensionless shear viscosity measured at short ti
as a function of the mean free path. The bullets are simula
results fornt/a2. The dashed line is the theoretical prediction f
thekineticpart of the shear viscosity, given by Eq.~52!. Parameters:
M535, a590°, L564.
6-7
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T. IHLE AND D. M. KROLL PHYSICAL REVIEW E 67, 066706 ~2003!
with d25(11c)vy /s. For symmetry reasons, the other co
tribution to C1, namely,A21,1 is equal toA1,21. Evaluating
the integrals, we have

C152
kBTal

Ap
FcA21

A11c

2
~123c!G , ~59!

so that

C150 for a50°, ~60!

C152
kBTal

Ap
F1

2
1cSA22

5

4D G for a'90°, ~61!

C15kBTalA2/p for a5180°. ~62!

Equation ~61! agrees with the smalll limit of Eq. ~47!.
Simple arguments can be used to show that the limitsa
50° and 180° are also correct.

Figure 3~b! shows the angular dependence of the ratiog
5C1 /^(Djyvx)

2&, which describes the initial decay of th
stress correlations. The behavior at small mean free pa
clearly qualitatively different than that for largel. In par-
ticular, the symmetry arounda590° is lost at smalll.

III. ANALYSIS OF THE ROTATIONAL AND MIXED
CONTRIBUTIONS TO THE SHEAR VISCOSITY

A. Simple approximation for the rotational contribution

Since the particle collisions occur in a shifted cell coor
nate system, they result in a transfer of momentum betw
neighboring cells in the originalunshiftedreference frame.
For l/a!1, this rotational contribution is much larger tha
the kinetic contribution and determines the value of sh
viscosity. Simple kinetic arguments can be used to obta
surprisingly accurate expression for this rotational contri
tion to the shear viscosity. Consider a collision cell of s
a3a oriented parallel to thex andy axes, and divide the cel
by the line y5h. The line y5h represents the boundar
between cells in the original unshifted reference frame. Si
we consider only momentum transfer in they direction, this
one-dimensional shift operation is sufficient. Assuming a
mogeneous particle distribution, the upper part of the c
containsM15M (a2h)/a particles on an average, while th
lower part hasM25Mh/a particles, withM11M25M . The
mean velocitiesu1 andu2 in the upper and lower partition
are

u15
1

M1
(
i 51

M1

vi ~63!

and

u25
1

M2
(

i 5M111

M

vi , ~64!

respectively. Since the mean free path is assumed to be
small, the definition of mean velocities on scales sma
06670
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than a cell size is justified. The stochastic rotation of velo
ties in the collision step transfers momentum between
two parts of the cell. Thex component of this momentum
transfer is

Dpx~h![(
i 51

M1

@v i ,x~ t1t!2v i ,x~ t !#. ~65!

Averaging now over the sign of the stochastic rotation ang
we have

Dpx~h!5~12c!M1~ux2u1,x!, ~66!

where we used the evolution equation~2!, with c5cos(a).
The y component of the velocity does not appear in th
expression because the average of the sine of the rota
angle is zero. UsingMu5M1u11M2u2, the differenceux
2u1,x can be rewritten asM2(u2,x2u1,x)/M , so that

Dpx~h!5~12c!M ~u2,x2u1,x!
h

a S 12
h

aD . ~67!

Averaging over the positionh of the dividing line corre-
sponds to averaging over the random shift of the grid. Do
this, we have

^Dpx&5
1

aE0

a

Dpx~h!dh5 1
6 ~12c!M ~u2,x2u1,x!. ~68!

Finally, if we approximate]ux /]y by

]ux

]y
5~u1,x2u2,x!/~a/2!, ~69!

the shear viscosityh, which is defined as the ratio of th
tangential stressPyx to ]ux /]y, can be expressed as

h5
Pyx

]ux /]y
5

^Dpx&/~at!

]ux /]y
, ~70!

since the tangential stressPyx is the mean increase, per un
time and unit length, of thex component of the momentum
of the gas across the liney5h. Using Eqs.~68! and ~69! in
Eq. ~70!, we obtain the result

n5
a2

12t
@12cos~a!# ~71!

for the kinematic viscosityn in the limit of small mean free
path. We checked the dependence of the viscosity on
rotation angle, Fig. 6, time step, temperature, and cell s
Fig. 7, and found very good agreement between the sim
tions and Eq.~71! in this limit. Although this derivation is
somewhat heuristic, it gives the prefactor with an unexpec
accuracy, as can be seen in Fig. 6.
6-8



la-
sor
u-

the

nd

ar

la-

t

d,

e

s

at
.

e
le,

nc

ti

-
th

nd

STOCHASTIC ROTATION DYNAMICS. II. . . . PHYSICAL REVIEW E 67, 066706 ~2003!
FIG. 8. Simulation results for small mean free path,l/a
50.113, anda590°. ~a! Transverse stress correlations as a fu
tion of time. Dotted line (d), rotational part^s rot(t)s rot(0)&;
dashed line (L), kinetic part^skin(t)skin(0)&; solid line, mixed
part ^skin(t)s rot(0)&1^s rot(t)skin(0)&. ~b! Various contributions
to the shear viscosity obtained by summing the stress correla
functions from ~a!. Dotted line (d), rotational viscosityn rot ;
dashed line (L), kinetic viscositynkin ; solid line, contribution of
the mixed term to the viscosity,nmix . ~c! Vorticity correlations
^wk(t)w2k(0)& as a function of time for three different wave num
bersk ~thick solid curves!. The thin dashed-dotted lines are fits wi
the function exp(2nFitk

2t). The fittedk-dependent viscositiesnFit

are upper line,k50.3927, nFit50.08; middle line,k50.555 36,
nFit50.08; lowest line,k50.8781, nFit50.079. Parameters:M
535, L516, t51; time average over 30 000 iteration steps a
two different initial conditions.
06670
B. Calculation of rotational and mixed stress correlations
at equal time

We learned from simulations that the temporal corre
tions of the rotational and the mixed part of the stress ten
usually decay very rapidly. Hence, the significant contrib
tions to the rotational and the mixed viscosity come from
first two to four terms in the sum in Eq.~1!. We will concen-
trate only on the first term, the correlations at equal time, a
compare them to the numerical values.

1. Rotational term

The t50 contribution to the rotational part of the she
viscosity is

n rot~0!5^s rot
2 ~0!&/~2NkBTt!, ~72!

with

^s rot
2 ~0!&5(

i , j

N

^Dv iyDj ix
s Dv jyDj jx

s &. ~73!

In contrast to the calculation of the kinetic stress corre
tions, off-diagonal contributions to Eq.~73! are not negli-
gible, even for largeM, and we have to adopt a differen
approach.

Although the following arguments are easily generalize
consider a specific random shift vectorb5(b,0) with b
P@0,a/2). In this caseDj ix

s 52a for all particles located in
a strip of widthb located on the right edge of a cell. Th
average number of particles in this strip isP5bM/a. For all
other particles in the cell,Dj ix

s 50. This means that in every
cell, only P particles contribute tôs rot

2 &, and we can sim-
plify expression~73!. Averaging over all possible shifts lead
to

^s rot
2 ~0!&52aL2E

0

a/2

dbK S (
i

P

Dv iy D 2L , ~74!

where the sum runs over all particles located in the strip
the right edge of the cell.L2 is the total number of cells
Using Eq.~3! for the stochastic rotation of they component
of the velocity, one finds

(
i

P

Dv iy5~12c!
P

M (
i

M

v iy1~c21!(
i

P

v iy2s(
i

P

v ix

1s
P

M (
i

M

v ix , ~75!

where ( i
M is the sum over all particles in the cell~in the

shifted system!, and( i
P is the sum over the particles in th

strip. c and s are the cosine and sine of the rotation ang
respectively. Assuming ideal gas correlations^v iav j b&
5d i j dabkBT, one obtains

K S (
i

P

Dv iy D 2L 52~12c!PS 12
P

M D kBT. ~76!

-

on
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FIG. 9. Simulations results for intermediate mean free pa
l/a50.632, anda590°. ~a! Transverse stress correlations as
function of time. Dotted line (d), rotational part̂ s rot(t)s rot(0)&;
dashed line (L), kinetic part^skin(t)skin(0)&; solid line, mixed
part ^skin(t)s rot(0)&1^s rot(t) skin(0)&. ~b! Various contributions
to the shear viscosity obtained by summing the stress correla
functions from ~a!. Dotted line (d), rotational viscosityn rot ;
dashed line (L), kinetic viscositynkin ; solid line, contribution of
the mixed term to the viscositynmix . ~c! Vorticity correlations
^wk(t)w2k(0)& as a function of time for three different wave num
bersk ~thick solid curves!. The thin dashed-dotted lines are fits wi
the function exp(2nFitk

2t). The fittedk-dependent viscositiesnFit

are upper line,k50.3927,nFit50.087; middle line,k50.555 36,
nFit50.087; lowest line,k50.8781, nFit50.086. Parameters:M
535, L516, t51.
06670
,

on

FIG. 10. Simulation results for small mean free path,l/a
50.113, anda5120°. ~a! Transverse stress correlations as a fun
tion of time. Dotted line (d), rotational part^s rot(t)s rot(0)&;
dashed line (L), kinetic part^skin(t)skin(0)&; solid line, mixed
part ^skin(t)s rot(0)&1^s rot(t) skin(0)&. ~b! Various contributions
to the shear viscosity obtained by summing the stress correla
functions from ~a!. Dotted line (d), rotational viscosityn rot ;
dashed line (L), kinetic viscositynkin ; solid line, contribution of
the mixed term to the viscositynmix . ~c! Vorticity correlations
^wk(t) w2k(0)& as a function of time for three different wave num
bersk ~thick solid curves!. The thin dashed-dotted lines are fits wi
the function exp(2nFitk

2t). The fittedk-dependent viscositiesnFit

are upper line,k50.3927,nFit50.128; middle line,k50.555 36,
nFit50.128; lowest line,k50.8781, nFit50.128. Parameters:M
535, L516, t51.
6-10
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InsertingP5bM/a and integrating overb yields

^s rot
2 &5

a2

3
@12cos~a!#NkBT, ~77!

so that we have, finally,

n rot~0!5^s rot
2 ~0!&/~2NkBTt!5

a2

6t
@12cos~a!#. ~78!

2. Mixed term

The equal time contribution of the mixed term to the to
viscosity is

Cmix52^s rot~0!skin~0!&52(
i , j

N

^Dj ixv iyDj jx
s Dv jy&.

~79!

Here we will make the assumption that only the diago
terms contribute, i.e.,

Cmix'2N^v iy
(0)~v iy

(1)2v iy
(0)!&^Dj ix Dj ix

s &. ~80!

Using expression~36!, and the evolution equation for th
velocities, Eqs.~2! and ~3!, we find

Cmix'2a2@12cos~a!#NkBTF1

6
2

1

p2 (
n51

`
1

n2

3expH 22p2n2S l

aD 2J G . ~81!

The zeroth-order contribution to the viscosity is therefore

nmix~0!'
Cmix

2NkBTt
5

a2

2Dt
@12cos~a!#F1

6
2

1

p2

3 (
n51

`
1

n2
expH 22p2n2S l

aD 2J G . ~82!

In the limit l!a this gives

nmix~0!'
a2

A2pt
@12cos~a!#

l

a
. ~83!

C. Comparison to simulations

A set of simulations was performed to evaluate the va
ous contributions to the stress correlations and to mea
the transport coefficients. The results are presented in F
8–11. After a short equilibration time, averages were ty
cally performed over 30 000–60 000 time steps. For simu
tions with N520 000–150 000 particles and system sizeL
564 or 128, the CPU time per time step and per particle w
between 1.8 and 2.3ms on an IBM SP~serial code, 375 MHz
Power3 processor!, depending on whether the cell shift wa
implemented or not, or whether the rotation angle was
~the computationally most efficient value!. This CPU time
06670
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estimate includes the overhead caused by the evaluatio
the transport coefficients, and would therefore be smaller
real production runs. For systems with a larger number
particles,N533105–63105, the average CPU time per it
eration and per particle increased to about 3.3ms.

Note thatn rot(0), Eq. ~78!, is up to a factor of 2 larger
than the viscosity measured at small mean free path,
~71!. This means that the contribution from the next ter
^s rot(t)s rot(0)&, is not negligible~for l!a) and must be
negative. This is clearly visible in our simulations, see Fig.

For large mean free path, see Fig. 9,^s rot(t)s rot(0)&
was found to be approximately zero, i.e.,n(0) is approxi-
mately equal ton rot . In Fig. 9~a!, it can be seen that the
decay rate of the kinetic stress correlations is larger fromt
50 to t5t than for larger values oft. This is consistent with
Eqs. ~48! and ~49!. Plotting the data in Fig. 9~a! on a loga-
rithmic scale~not shown! confirms the hypothesis made fo
lowing Eq. ~48! that the ratio of higher-order terms such
C2 /C1 , C3 /C2, etc., is constant and given by the continuu
approximation.g5C1 /C0, on the other hand, contains finit
a correction terms.

Figure 10 shows the temporal behavior for the kinet
rotational, and mixed stress correlations for an equilibriu
system witha5120°, M535, andl/a50.1129. We mea-
sured the valuesh^s rot

2 (0)&50.481, h^s rot(0)skin(0)&5

20.056, andh^skin
2 (0)&50.09, whereh5t/(a2NkBT) is a

normalization factor. These values are generally in go
agreement with the theoretical results obtained from E
~77!, ~81!, ~28!, and ~50!, namely, h^s rot

2 (0)& theo50.5,
h^s rot(0)skin(0)& theo520.0675, and h^skin

2 (0)& theo

50.09. The largest discrepancy is for the mixed contrib
tion, which is overestimated by about 20%. This is not s
prising, however, since we neglected the off-diagonal con
bution in the derivation of Eq.~81!.

For larger mean free path,l/a50.632 anda590°, see
Fig. 9, the agreement is very good for all three quantities.
found h^s rot

2 (0)&50.32 ~theory, 0.33),h^s rot(0)skin(0)&
520.084~theory, 0.0833), andh^skin

2 (0)&50.565~theory,
0.564).

Cancellation of errors

Figure 11~b! shows the various contributions to the tim
dependent viscosity~i.e., the integrated stress correlations
to time t) for a560°, M535, andl/a50.1129. The heu-
ristic derivation of the rotational contribution to the viscosi
given in Sec. III A, Eq.~71!, predicts a value 0.0416 for th
viscosity which is in excellent agreement with the measu
total viscosity 0.042. The value we get for the rotation
contribution from the Green-Kubo formula, see Fig. 11~b!, is
0.062, i.e., is about 50% larger. This means that the con
butions from the kinetic and the mixed part, which were n
included in the derivation of Eq.~71!, are equal to20.02,
and not negligible, even at this small mean free path. It
pears that this cancellation occurs for a wide range of ro
tion angles, between 30° and 160°, for reasons we do no
understand.
6-11
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FIG. 11. Simulation results for small mean free path,l/a50.113, anda560°. ~a! Transverse stress correlations as a function of tim
Dotted line (d), rotational part̂ s rot(t)s rot(0)&; dashed line (L), kinetic part^skin(t)skin(0)&; solid line, mixed part̂ skin(t)s rot(0)&
1^s rot(t) skin(0)&. ~b! Various contributions to the shear viscosity obtained by summing the stress correlation functions from~a!. Dotted
line (d), rotational viscosityn rot ; dashed line (L), kinetic viscositynkin ; solid line, contribution of the mixed term to the viscositynmix .
~c! Vorticity correlations^wk(t) w2k(0)& as a function of time for three different wave numbersk ~thick solid curves!. The thin dashed-
dotted lines are fits with the function exp(2nFit k2t). The fittedk-dependent viscositiesnFit are upper line,k50.3927,nFit50.045; middle
line, k50.555 36,nFit50.043; lowest line,k50.8781,nFit50.043. Parameters:M535, L516, t51. Here and in the following all times
lengths, and masses are given in internal units of the simulation. The internal units for viscosities and other quantities follow fro
definitions. In those units the time step is equal tot, the mass is equal to 1, and the lattice constant of the grid is equal toa.
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IV. ANALYSIS OF THE BULK VISCOSITY

Continuum approximation, lÕa\`

The kinematic bulk viscosityg can be determined in a
similar fashion. In particular, taking nowk̂ in thex direction
anda5b51 in Eq. ~54! of Part 1, we have

n1g5
t

NkBT (
t50

`

8 ^I 2~ x̂,0!uI 2~ x̂,t !&. ~84!

Employing the same approximations as in Sec. II A, o
finds

^I 2~ x̂,0!uI 2~ x̂,nt!&5N~kBT!2@z1h#n. ~85!

This is the same result as that obtained in Sec. II A@see Eq.
~10!# for ^I 2( ŷ,0)uI 2( ŷ,t)&, the corresponding term in th
Green-Kubo relation for the shear viscosity. It follows th
the bulk viscosity is zero for this model. This is the sam
result as for an ideal gas. Measurements of the bulk visco
06670
e

t

ity

via the Green-Kubo formula, see Fig. 12, confirm that t
bulk viscosity is essentially zero and has no long-time ta

V. ANALYSIS OF THE THERMAL DIFFUSIVITY

A. Continuum approximation, lÕa\`

The Green-Kubo relation for the thermal transport coe
cient is given in Eq.~57! of Part 1, and the correspondin
flux in Eq. ~55! of Part 1. In the limit of large mean free path
we can make the same approximations as in Sec. II A. In
dimensions, takingk̂ in the x direction, we then have

I d12~ k̂,t !5(
j 51

N

@v j
2~ t !/22cpT#v jx~ t !. ~86!

Defining En[^I d12( x̂,0)uI d12( x̂,nt)&, and using the same
analysis as in Sec. II A, one has

E152N~kBT!3@z1~z1
21z2

2!1h1#, ~87!
6-12



s

of
e

h
a

ry

to
l
a

bu
e

al

a-

te
et

i

n
os

e
ge

e

ty

,
al

STOCHASTIC ROTATION DYNAMICS. II. . . . PHYSICAL REVIEW E 67, 066706 ~2003!
whereh152(M21)(12c)2/M3 andz1 andz2 are defined
in Sec. II A. The two terms in Eq.~87! are the diagonal and
off-diagonal contributions, respectively. Similarly, one find

En52N~kBT!3@z1~z1
21z2

2!1h1#n, ~88!

so that

DT5
kBT

2
tF11z1~z1

21z2
2!1h1

12z1~z1
21z2

2!2h1
G . ~89!

B. Measurements

Figure 13 shows the thermal diffusivity as a function
rotation angle. As can be seen, there is very good agreem
with the theoretical prediction, Eq.~89!. Figure 14 shows
that the kinetic contribution to the heat diffusivity is muc
larger than the rotational contribution, even at small me
free path. Furthermore, it can be seen thatDT diverges loga-
rithmically with time, as predicted by mode-coupling theo
@6,7#.

C. Calculation of the rotational part of the thermal diffusivity

As can be seen in Fig. 14, the rotational contribution
the thermal diffusivity,DT,rot , is small compared to the tota
diffusivity and can be neglected even at small mean free p
l/a;0.1. Figure 14 also shows that thatDT,rot is essentially
independent of time, which means that only thet50 equal
time correlations of the heat flux are nonzero. This contri
tion can be determined using the approach applied in S
III B 1 to calculate a similar contribution to the rotation
part of the shear viscosity, Eq.~78!.

FIG. 12. Temporal behavior of bulk and shear viscosities de
mined from the Green-Kubo relations. The dashed line is the kin
contribution to the sum of bulk and shear viscosities,nkin1gkin ,
obtained from the longitudinal stress correlations. The solid line
the total measured bulk and shear viscosities,n1g; the dotted line
is the result forn determined from the transverse stress correlatio
The good agreement of these results indicates that the bulk visc
g is negligibly small at all times. Parameters:M55, L564, a
560°, kBT50.0413,l/a50.203; time average over 130 000 tim
steps and over 40 different initial seeds of the random number
erator.
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The t50 rotational contribution to the Green-Kubo rel
tion for the thermal diffusivity@Eq. ~51! of Part 1# in two
dimensions is

DT,rot~0!5
1

16tN~kBT!2 ^sT,rot
2 ~0!&, ~90!

with

^sT,rot
2 ~0!&5(

i , j

N

^Dv i
2Dj ix

s Dv j
2Dj jx

s &. ~91!

The approach of Sec. III B 1 can be used to show that

r-
ic

s

s.
ity

n-

FIG. 13. Dimensionless thermal diffusivityDT /(kBT t) at large
mean free path,l/a52, as a function of the rotation anglea. The
dashed line is the theoretical prediction, Eq.~89!. Parameters:M
535, kBT54, L564. Here and in the following all angles ar
measured in degrees.

FIG. 14. Long-time tail of the dimensionless thermal diffusivi
DT /(kBTt) ~solid curve! as a function of time for smallM55. The
dashed line is the fit 1.87610.115 ln(t). The small deviation att
'220 agrees well with the recurrence time for sound wavestS

5222.7. The lower dotted line is the rotational part of the therm
diffusivity, DT,rot , which is predicted to be small; see Eq.~95!.
Parameters:kBT50.0413,L564, l/a50.203,a560°.
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^sT,rot
2 ~0!&52aL2E

0

a/2

dbK S (
i 51

P

Dv i
2D 2L , ~92!

where Dv i
25v i

2(t)2v i
2(0), and the sumgoes over allP

5bM/a particles located in the strip at the right edge of t
cell. Using the collision rules~2! and ~3!, one finds

K S (
i 51

P

Dv i
2D 2L 516~kBT!2~12c!P~M2P!/M2.

~93!

InsertingP5bM/a and integrating overb, we have, finally,

^sT,rot
2 ~0!&5

8

3M
a2N~12c!~kBT!2, ~94!

so that the rotational contribution to the thermal diffusivity
time zero is

DT,rot~0!5
1

M

a2

6t
~12c!. ~95!

It is now clear why collisions do not make a significant co
tribution to the thermal diffusivity, even at smalll/a. The
correlations of the heat flux contain the internal ener
which is proportional to the sum of the squares of the rela
velocity vectors. The special nature of the collision step
stochastic rotation dynamics~SRD!—rotations of the relative
velocity vectors—leaves the length of these vectors inv
ant. For largeM, the relative velocity of a particle is esse
tially equal to the velocity itself, so that rotations do n
transfer heat. This is the source of the factor 1/M in DT,rot ,
implying that collision contributions to the thermal condu
tivity are negligible in practical applications, whereM is
generally much larger than 1. Evaluating Eq.~95! for the
parameters of Fig. 14,M55, t51, kBT50.0413,c50.5,
a51 givesDT,rot(0)50.016 66, while the measured valu
from Fig. 14 is 0.012 275, which differs only by a factor
1.357. This difference might be due to the fact that we h
neglected fluctuations in the number of particles in a cell;
M55, these fluctuations are not negligible.

VI. ANALYSIS OF THE SELF-DIFFUSION CONSTANT

The self-diffusion constantD of particle i is defined by

D5 lim
t→`

1

2dt
^@r i~ t !2r i~0!#2&. ~96!

The position of the particle at timet5nt is

r i~ t !5r i~0!1t (
i 50

n21

vi~kt!, ~97!

so that

^@r i~ t !2r i~0!#2&5t2(
j 50

n21

(
k50

n21

^vi~ j t!•vi~kt!&. ~98!
06670
t

-

,
e
n

i-

e
r

The sums can be rewritten as

(
j 50

n21

(
k50

n21

^vi~ j t!•vi~kt!&

5 (
j 50

n21

^v i
2~ j t!&12(

j 50

n22

(
k5 j 11

n21

^vi~ j t!•vi~kt!&

5ndkBT12(
j 51

n21

j ^vi~0!•vi~n2 j !t&. ~99!

Restricting ourselves tod52, and making the same approx
mations as in Sec. II A, one has

^vi~0!•vi~kt!&52z1
kkBT, ~100!

so that

D5 lim
n→`

t2

4nt F2nkBT12(
j 51

n21

j z1
n2 j G5kBTtF1

2
1

z1

12z1
G .

~101!

The same result can be obtained using the discrete Gr
Kubo relation

D5
t

d (
t50

`

8 ^vi~0!•vi~ t !&. ~102!

In Fig. 15, the diffusion constant~measured as sma
times! is plotted as a function of the rotation angle and co
pared with Eq.~101!. For angles not too close to 180°, th
agreement is very good. It follows from Eqs.~101!, ~51!, and
~71! that the Schmidt number Sc5n/D is smaller than or of
the order of 1 for large mean free path. However, forl/a
!1, very large Schmidt numbers can be obtained since
;(a/l)2. Sc can be further increased by going to larg
rotation angles, whereD becomes very small.

FIG. 15. Dimensionless self-diffusion constantD/(kBTt) as a
function of the rotation anglea ~solid line and bullets!. The dashed
line is a plot of approximation~101!. Parameters:M535, kBT
50.012 75,l/a50.113,L532.
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Correction term

For k>2, Eq.~100! is not exact. It neglects contribution
from situations in which particles that are in the same box
time k1t, 0<k1,k, are again in the same box at a later tim
k2t, k1,k2<k. In contrast to the situation with the visco
ity, these terms are not of the order of 1/M2 or smaller; they
are of the order of;(12c)/M , i.e., of the same order as th
leading corrections for finite particle numberM. The prob-
ability that such multiple encounters occur increases
longer a particle stays in the same cell, which is the case
small mean free path and strong backscattering, i.e., at l
anglesa. This is consistent with the results shown in Fig.
for l/a50.11, where deviations at larger angles can be se
A detailed analysis of these corrections goes beyond
scope of this paper; however, we can gain some insight
these corrections if we consider the worst case scenari
zero mean free path. In this case, particles remain in
same cell, and

^vi~0!•vi~kt!&52kBTS ck1
12ck

M D . ~103!

As expected, this result differs from Eq.~100! by terms of
O(1/M ) for k>2. Although thisl/a→0 limiting case is
pathological, it does show the existence of additio
O(1/M ) corrections to the self-diffusion constant.

VII. LONG-TIME TAILS

There is a renormalization of the transport coefficients
the viscosity, the diffusion constant, and the therm
diffusivity—at long times due to long-time tails in the corr
sponding autocorrelation functions@6,7#. In two dimensions,
these correlation functions are predicted to behave as 1t at
large times, and this leads to transport coefficients that
verge logarithmically with time. Specifically, mode-couplin
theory predicts

^sxy~ t !sxy~0!&;
~kBT!2

rd~d12! S d222

~8pnt !d/2
1

1

~4pGst !
d/2D
~104!

and

^vx~ t !vx~0!&;
d21

rd

kBT

@4p~n1D !t#d/2
~105!

at large times, whereD is the bare self-diffusion constant,r
is the number density (;M in our method!, d is the dimen-
sion, and

Gs5
2~d21!

d
n1g1S cp

cv
21DDT ~106!

is the sound attenuation coefficient, whereDT5lTcv /cp is
the thermal diffusivity, and the thermal transport coefficie
lT is defined in Eq.~57! of Part 1.

In order to resolve the tails in a simulation, paramet
have to be optimized to obtain a large signal to noise ra
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First, from Eqs.~104! and ~105! it can be seen that the am
plitudes of the tails are large at low density and small v
cosity. Hence, we take a small number of particles per c
M55 and M510. Furthermore, in order to have a sma
viscosity and diffusion constant, the temperature should
be too large. High temperature also means a large spee
sound,cs5A2kBT, so that the timet r5L/cs for the recur-
rence of sound waves would be too small. On the other ha
the physical origin of the long-time tails is the so-calle
backflow effect, in which a moving particle creates vortic
that couple back to it and push it further in the already ch
sen direction. These vortices need some timetS to develop. A
final requirement is that there be no other slow relaxat
process which could mask the tail. This means that tails
only be observed in the time window betweentS and t r ;
furthermore, the smaller the value oftS , the larger the signa
to noise ratio. We found in the simulations thattS also de-
creases with increasing temperature.

Although the viscosity ind52 has a minimum ata
590° for moderate to large mean free paths, as discus
above, the oscillatory decay of the kinetic stress correlati
in this case is very slow. In order to avoid the possibility th
this slow decay could interfere with the measurement of
long-time tails, a rotation anglea560° was chosen, for
which the decay is rather fast. In order to reduce the sta
tical noise to acceptable levels, a time average of the st
correlations was taken over 130 000 time steps, and an a
age over thex andy directions was performed. We also a
eraged over 40 runs with different initial conditions. For th
set of parameters andL564, we were able to directly mea
sure the logarithmic behavior of the shear viscosity; see F
16. We found that only the kinetic part of the stress ten
contributes to the 1/t tail in the stress correlation function; n
tails could be detected in either the rotational or mixed c
tributions.

FIG. 16. Various contributions to the shear viscosity as a fu
tion of time. The lower solid line is the kinetic partnkin and the
upper solid line is total viscosityn. Both exhibit the same logarith
mic behavior. The functiona1b ln(t) ~long dashed lines! is shown
for comparison. The deviation at timet'200 is caused by the re
currence of sound waves. The top dashed line is the rotational
tribution n rot which is essentially constant at long times. Para
eters: a560°, l/a50.2, M55, kBT50.0413. Lower curve,a
50.0435, b50.0017; upper curve,a50.0497, b50.0018. Time
average over 130 000 time steps and over 40 different initial se
of the random number generator.
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If we use Eq.~104! in the continuum Green-Kubo relatio
for the shear viscosity, the asymptotic behavior of the visc
ity in two dimensions is predicted to be

n~ t !;kBTd0ln~ t !, ~107!

with d05a2(1/n11/Gs)/(32pM ), where a is the cell di-
mension. At timet5100 we measured a shear viscosityn
50.058 and a thermal diffusivityDT50.096. The bulk vis-
cosity was zero within the error bars. Using thed52 ideal
gas valuecp /cv52, we obtain the theoretical predictiond0
50.0475. A logarithmic fit of the measured temporal beh
ior of the viscosity gives

n;0.049210.001 88 ln~ t !, ~108!

leading tod050.045 52, which is only 4.5% smaller than th
value predicted by theory. In order to investigate the den
dependence of the long-time tails, another simulation w
conducted with twice as many particles per cell,M510. We
found that the amplituded0 of the tail was exactly half tha
measured forM55, as expected.

We have also measured the amplitude of the long-time
of the velocity autocorrelation function, and obtained a res
that is within 15% of the predicted value. The numeric
effort in this case was smaller than for the viscosity measu
ment because we could also average over all particles. In
simulations of ^v ix(0)v ix(t)& we also performed an en
semble average over 1000–2000 different initializations
the random number generator, which required CPU tim
between 5 and 10 h forL564 andM55 –10. Figure 17~a!
shows the 1/t tail of the velocity autocorrelation function fo
two different particle densities,M55 andM510. Again, we
observe that the amplitude is proportional to;1/M , as
predicted by Eq.~105!. Figure 17~b! contains plots of the
normalized velocity autocorrelation functio
^v ix(0)v ix(t)&tS /@t^v ix(0)2&# as a function of the scale
time t/tS , where tS5L/A2kBT is the recurrence time fo
sound waves, for two temperatures,kBT50.012 75 and
0.0413. Both curves show the same behavior, namely, a p
at large times,t/tS;L, due to the recurrence of soun
waves, as well as the onset of the tail at the same resc
time.

As an additional test for this scaling behavior, we coup
to a heat bath using a stochastic method similar to that
scribed in Ref.@11#, and found that the correlation function
in the canonical ensemble are the same as in the micr
nonical ensemble if the time is rescaled by a factor ofA2.
This is exactly the ratio of the adiabatic and isotherm
speeds of sound, i.e., the thermalization reduces the spe
sound fromA2kBT to AkBT. Both t r and tS are therefore
determined by the speed of sound.

We also measured the long-time behavior of the ther
diffusivity, Fig. 14, and the bulk viscosity, Fig. 12. While w
can see a logarithmic tail inDT , the bulk viscosity remains
essentially zero at all times.

In summary, the SRD algorithm has passed a very se
tive test. The amplitude of the long-time tail of the stre
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correlation function is a sensitive function of the nonlinea
ties in the hydrodynamic equations and the possible e
tence of spurious invariants, such as occur in conventio
lattice gas automata~LGA! @8,9#. Simulations of LGA
showed a long-time tail in the stress correlations, but
prefactor is altered by spurious invariants. To our knowled
molecular dynamics simulations with soft potentials have,
far, failed to confirm this tail@10#, probably because the ki
netic contribution to the stress tensor, which is respons
for the tail, is much smaller than the potential contributio
With SRD it is possible to tune the relative amplitude
the relative kinetic and potential~rotational! contributions,
making it possible to measure the individual contributio
directly.

FIG. 17. Long-time tail of the normalized velocity autocorrel
tion function averaged over all particles and 2000 initial seeds
the random number generator.~a! ^v ix(0)v ix(t)&/^v ix

2 (0)& vs time
for M55 ~upper dotted curve! andM510 ~solid curve!. The long-
dashed line is the fit 0.067/t. The dashed line is the fit 0.036/t.
Parameters:a590°, kBT50.0413,L564, t51. ~b! The normal-
ized velocity autocorrelation function̂v ix(0)v ix(t)&tS /@t^v ix

2 (0)&#
as a function of the scaled timet/tS , where tS5L/A2kBT is the
recurrence time for sound waves. The solid curve correspond
kBT50.012 75, while the dotted curve is for a larger temperat
kBT50.0413. The dash-dotted line is the fit 0.0884/t, while the
dashed line is the fit 0.0663/t. Other parameters:a590°, M55,
L564, t51.
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VIII. CONCLUSION

In this paper, we have presented a comprehensive ana
cal and numerical study of the stochastic rotation dynam
model for fluid dynamics in two dimensions. Exa
calculations—incorporating both the cell structure and
random cell shifts prior to collisions—were presented, an
was shown that finite cell size effects persist even at la
mean free path. These corrections to the continuum appr
mation ~which amounts to ignoring contributions fromDjs

and replacingDj by tv in stress correlation functions! were
shown to lead to an additional contribution to the shear v
cosity which is significant fora'90° in two dimensions.
The resulting expression for the viscosity was shown to b
excellent agreement with simulations, thus resolving discr
ancies with previous theoretical results. Accurate explicit
pressions for all other transport coefficients were derived
compared with simulations for a wide range of mean f
paths and rotations angles. Several approximations and
sumptions were discussed in detail and their validity tes
No assumptions were made regarding the validity of the m
s

e
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lecular chaos approximation, so that correlation effec
which are particularly important for small values of the ra
l/a, were incorporated into the calculations. This exten
the original work of Malevanets and Kapral@2# to arbitrary
rotation angles and small temperatures, and allowed u
obtain accurate approximations for the transport coefficie
Finally, as a very sensitive test of the model, long-time ta
in the velocity, stress, and heat-flux autocorrelation functio
were analyzed and shown to be in excellent agreement
the results of previous mode-coupling calculations.
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