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Stochastic rotation dynamics. Il. Transport coefficients, numerics, and long-time tails
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A discrete-time projection operation technique was used to derive the Green-Kubo relations for the transport
coefficients of a recently introduced stochastic model for fluid dynamics in a previous(Papef). The most
important feature of the analysis was the incorporation of a new grid shifting procedure which was shown to
guarantee Galilean invariance for arbitrary Mach number and temperature. This (Papef contains a
detailed analysis of the transport coefficients of this model. An exact calculation of the first terms in the stress
correlation function in the limit of infinite particle density is presented, which explicitly accounts for the cell
structure introduced to define the collision environment. It is also shown that this cell structure can lead to
additional contributions to the transport coefficients even at large mean free paths. Explicit expressions for all
transport coefficients are derived and compared with simulation results. Long-time tails in the velocity, stress,
and heat-flux autocorrelation functions are measured and shown to be in excellent agreement with the predic-
tions of mode-coupling theory.
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[. INTRODUCTION in the limit of small mean free path is presented in Sec. Il A,
while subsequent sections discuss the equal time contribu-
In a previous paper, Part 1 of this series, a discrete-timgions to the rotational and mixed stress correlations and
projection operator technique was used to derive the Greerpresent a comparison with simulation results. In Sec. IV, it is
Kubo relations for the transport coefficients of a recentlyshown that the bulk viscosity is zero for this model, and the
introduced stochastic model for fluid dynamics with continu-thermal diffusivity and self-diffusion constant are discussed
ous velocities and efficient multiparticle collisions. It was in Secs. V and VI, respectively. Results for the long-time
also shown how random shifts of the collision environmenttails in the stress correlation functions and corresponding
could be used to ensure Galilean invariance for arbitrarjiransport coefficients are presented in Sec. VIl and shown to
Mach number and temperature. In this pageart 2, we be in excellent agreement with the predictions of mode-
present a detailed analytical and numerical analysis of theoupling theory. The work is summarized in Sec. VIII.
Green-Kubo relations derived in Part 1. Several approxima-
tions will be discussed in detail and compared with simula-
tion results. The analytical calculations assume that the equal
time correlations are those of an ideal gas, but no assump-
tions are made regarding molecular chaos; the correlations A. Continuum approximation, A/a—
which can develop at small mean free path are explicitly

ok . The Green-Kubo relation for the viscosities is given in
accounted for. The only other approximation we make is FOEq. (56) of Part 1 of this series, and the relevant reduced

neglect fluctuations in the number of particles in a cell. Th'sﬂuxes are defined in Eq55) of that paper. Restricting our-

amounts to neglecting terms .Of thg ordeeof", whgreM 'S selves to two dimensions, the shear viscosity is obtained if
the average number of particles in a cell, and is therefore

justified in all practical calculations, wheh=5. we takek in they direction anda=$=1, so that
Section Il of this paper contains an analysis of the kinetic ; 2
contributions to the shear viscosity. An explicit calculation of v=—o > (1,(y,0)[15(y,1)). )
the kinematic shear viscosity valid in the continuum limit, NkgT =0
NMa—o, is presented in Sec. Il A, and finite cell sizer
finite N/a) corrections are discussed in subsequent sectiong.or large mean free path, one expects contributions from the

In particular, it is shown in Sec. Il B 4 that there are correc-term proportional tk- A& in Eq. (55) of Part 1 to be neg-
tions proportional to ¢/\)? to the shear viscosity which re- ligible. Furthermore, fop\}a_>oo, we assume thak ¢, can
solve previous discrepancies between theory and simulatiogg replaced by, in the ensemble average; the validity of
for a~90° in two dimensions. An analysis of the rotational these approximations is discussed in Sec. Il B of this paper.
(stochastic collisionand mixed contributions to the shear We therefore need to evaluat@nz(l2(9,O)|I2(§/,n7-)>,

viscosity is presented in Sec. Ill. A simple approximate ex- - N _ )
pression for the rotational contribution to the viscosity valid Wherel2(y,t) =i vjwiy . The evolution of the velocity of
particlei during a time step is described by

II. ANALYSIS OF THE KINETIC CONTRIBUTIONS
TO THE SHEAR VISCOSITY

*Present address: InstitutrfiComputeranwendungen 1, Univer- v, (t+ 7) = Ug (1) + [ (1) —Ug(t) ]+ S[vjy (1) —Ug (1) ]
sitat Stuttgart, Pfaffenwaldring 27, 70569 Stuttgart, Germany. 2)
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and

Viy(t+ 7)=Ugy () + clvjy (1) — Ugy(D) ] = S[vix () —Uge(D) ],
)

with c=cos), s=sin(a), and u;=(1/M)Zy_.vy, where
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and direct off-diagonal contributions considered above.
However, these higher off-diagonal contributions can be
summed in the geometric series

the sum runs over all particles in the cell occupied by particleSo that

i att=n7. Consider first
C1=; <Uiiny[U§x+C(ij_ng)+5(vjy_ugy)]

(4)

Using (viuvjp)

X[Ugy+ C(vjy—Ugy)—S(ij_U.gx)Di

where v;=v;(0) and u;=ug0).

= 3ij 0,5KsT and(s)=0, one finds that there are both diag-

onal and off-diagonal contributions ©,. The off-diagonal
contribution comes from particlgswhich are in the same
cell as particlei att=0. In this casey;(7) has a “projec-
tion” on v;(0) through the mean cell velocity. One finds

<Uixviyvjx( T)ij(T)>:<Uixviy[(1_C)Uix_SUiy][(l_C)Uiy

kgT)\?
+SU‘X]>/M2:2(V) c(c—1).
)
The diagonal contribution is
(WixViyVix(1)viy (7)) =(Vixviy[ {101+ {oviy]
X[glviy_§20ix]>v (6)

wheref;=1/M+c(1—-1/M) and{,=s(1—1/M). Perform-
ing the averages, one has

<Uixviyvix(7)viy(7)>:(kBT)zga (7)
where
1 1112 1\2
_ 22 | o 2l =
(=04 M+c 1 M) s(l M) . (8)
Since there ardl — 1 off-diagonal contributions, one finds

C1=N(kgT)?[¢+ 7], 9

wheren=2(M—1)c(c—1)/M?2. Note that the leading diag-

onal contribution iD(1), while that of the off-diagonal con-
tribution is O(1/M).

The behavior over longer-time intervals can be analyzed

in a similar fashion. Considet,. Following the arguments

Co/N(keT)?=[{+ 7]"={"+np" "1+, (10
1 & .
v=keT 7| 5+2 [£+7)
2 &
_kBT’T/ 1
T2 \(l—l/M)sinZ(a)_l' (1)

For «=90°, this result agrees, apart from exponentially
small O(e~™) corrections arising from fluctuations in the
number of particles in a cell, with the expression given by
Malevanets and KaprdlL,2]. We have shown previous[y3]
that the viscosity measured in simulations is much larger
than this value fore=90°. This discrepancy is resolved in
the following sections.

B. Lattice effects, A/a finite

In this section we go beyond the continuum approxima-
tion discussed in Sec. Il A and consider explicitly the effect
of the cell structure used to determine the collision neigh-
bors. This is particularly important for small mean free path,
where neither the decay rate of the kinetic stress correlations
nor its dependence on the rotation angle is correctly de-
scribed by the continuum approximation. There are also con-
ditions (large M, a=~90°) for which finite cell size correc-
tions are important, even for large mean free path. It is
shown how accurate approximations for the transport coeffi-
cients can be obtained in these cases even when the assump-
tion of molecular chaos is not valid and where the details of
the lattice structure are important. The resulting expressions
are shown to be in good agreement with simulation data, and
therefore clarify the source of the shortcomings of the ap-
proximations discussed in the Sec. Il A.

In order to go beyond the continuum approximation when
evaluating the Green-Kubo relatidh) for the shear viscos-

ity, we need to consider the full reduced fluxy,t) given in
Eq. (54) of Part 1 of this series. Explicitly,

N 1
127.0== 7 2 [p(DALD +Av(DALD].
(12)

of the last paragraph, there is a diagonal contribution proporCorrelation functions involvingh ¢ and A¢® therefore need
tional to £2 and an off-diagonal contribution proportional to to be evalugted. .In the follqwmg sectlo'ns we consider these
27¢, since at each time steM — 1 particles become corre- €'ms, starting with equal time correlations.

lated with particlei, and particlej can become correlated _ m
with particlei at either of the two time steps. Note, however, 1. Calculation of(A&;gvy)

that there are now additional—higher order—contributions Assume, as in an ideal gas, that the probability distribu-
which arise, for example, when partigleecomes correlated tions for particle coordinates and velocities are decoupled,
with particlek which then becomes correlated with particle and that the particles are homogeneously distributed in
It is easy to see that these contributions carry additional facspace. We proceed by first averaging over all particle posi-
tors of 1M and are thus of higher order than the diagonaltions at fixed velocities. For this purpose, all possible propa-
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gation distances;; 7 of a particle(in g direction are di-
vided into intervals of cell sizea. Averaging over the
particle’s spatial coordinate for fixed velocity,, the prob-
ability of a cell displacemenA&;z;=na is

pr=[vigT—a(n—1)]/a (13

if the velocity is in the interval f—1)a<wv;z; 7<na. The
probability of a cell displacemeni§;;=(n—1)a is q,=1
—pn. Itis easy to see tha(tAgiﬂv{D:O for B#¢. For B

=g,

<A§iﬂvin[]3>:an=§m (:a/:)a/TW(Uig)vir?;
X{np,+(n—1)qp}dvig, (14
wherew(v;,) is the Boltzmann distribution. Since
anp,ta(n—1)q,=vizT, (15
Eqg. (14) reduces to a single integral, and we have
(Ag&iguip)=(vigvip), (16)

so thatA§;; can be replaced byv;z in averages that are

linear in A¢. We measuredA¢;,viy) in a simulation, and

found, in agreement with these results, that it is equal t

7kgT within statistical error. Averages such @ ¢; B)2>, on

the other hand, which are not linear &€, need to be cal-
culated explicitly, since they differ from what would be ob-

tained by substitutingv; ; for A in the average.

2. Calculation of ((A£;,)?)
For convenience, we omit the particle indieix this sec-

tion. We also assume that the particle density is homoge-
neous and that the static correlation functions are those of an
ideal gas, e.g(vi,rjz=0. Consider a particle that moves
from positionr,=Xq to Xg+ 7v, in one time step. For fixed

vy, the probability that\ ¢,=na is

a

1
P, (Aé=na)= 5[ dxy® (Xg+vyT—Nay)

0

X{1-0O(Xg+vy,7—[n+1]a)}, (17

where we have averaged over the initial positignof the
particle. For Q—1)a<v,7<na, Eqg. (17) reduces to
va(Agxzna)zpn, where p,, is given by Eq.(13), as it
should.

Using Eq.(17), we have
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<(A§x)2>=n;w f:dvvax(Agfna)(na)ZW(vx)

1ra * [(n+1)a—xg)/
=—j dxo > J " (anw(v,)do,,
a 0 n=—ow (

na—xg)/ 7
(18
where
_ 1 vi 19
W(Ux)_mex _ZkBT ( )

is the Boltzmann distribution. The Poisson sum form{dla

S gm=3 | a@emds (@)

n=-—ow

can now be used to transform Ed.8) into

<<A§X>2>=afadxo > f ¢*h(p)e>""¢d g,
0 n=—cw — 00
(21)

with

[(¢p+1)a—xp]/ 7

h(é)= J(d)axo)/f

A partial integration with respect tg is next performed to
eliminate the integral ih(¢). The resultingn=0 term in

W(vy)doy. (22

c{he sum in Eq(21), S, is

2 ra w b3

—w[(pa—xp)/7]}d¢. (23
The integrals can be performed to obtain
a2
So=5+ %kgT. (24)

Consider now then#0 terms in Eq.(21) and introduce
the quantityl’=2in. Denoting this sum bys, we have
a? a o 2 2 1)
Sp=— 2, fo dxoﬁx 2T TeT e T wede,

T n#0 T

where the propertye*'=1 was used, andvy=w([ ¢a
—Xol/ 7). Using

a 0
f dxg f e 'wydp=0 (26)
0 —0o0

and

066706-3



T. IHLE AND D. M. KROLL

Na.

FIG. 1. (A&£2)/a? as a function of\/a. The bullets are simula-

tion data obtained on a 6464 grid; the solid line is expression

(28); the dotted lines, approximatiof9) for A/a<1; and the
dashed line is approximatiof30) for N/a>1.

a )
f dxof pe Pwodop=— 5 i exf —272n%(\a)?],
0 — o

in
(27)
one finds the final result
((A))=Sp+Sp=a 6 lal &
1
X —exd —27*n’(Ma)?] |, (28)
n

where\ = 7\kgT is the mean free path. For small mean free

path,\/a<1,

(A& ~an2/m, (29
while for large mean free path,
((Agw)?)~5a®+A% (30)

Note that the small term-a2/6 in Eq. (30) is absent in the

continuum approximation discussed in Sec. Il A. We will see
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<A§isx|X>§
1 (a2
=—J {®@(na—X—-6)—0O(X+6—-[n+1]a)}ds
al-ar
={(n+1/2)a—X}. (31
It follows that
1 ra ” [(n+1)a—xq)/ 7 1
<A§ixA§in>:_f dx, >, an {a n+—
aJo nFw (na—xg)/7 2
_[XOJ’_UXT]]W(UX)de- (32)

As in the preceding section, we use the Poisson sum formula
(20) and integrate by parts. The resulting=0 term is

a’ (a »
T0=—f dxof {(2¢°+3¢%)w;
127- 0 — o0

+(—2¢%+34%)wold o,

with wo=w([ pa—xpl/7) and wi=w((d+1)a—xq]/7).
Performing the integrals, one finds

(33

where agail’=2in. Using Eqgs.(26) and(27), we find
(AEAE)=To+ Te=3[((A&)?) —\?],

where((A&;,)?) is given by Eq.(28). In the limit of small
mean free path(A&, A&, )~any2/7), and for N/a— o,
<A§ixA§in>~a2/12'

(36)

4. Calculation of (A £ vV AEPv(P) for a=90°

later that this correction can, in certain cases, provide the The following calculations are performed in the linhit

dominant contribution to the viscosity.

These results fof(A£;,)2)/a? are compared with simula-

tion data in Fig. 1. The solid line is expressi(8), and the
dotted and dashed lines are plots of E@Q) and (30), re-

—oo, 50 that we can use the simplified evolution equations

(37

viP=cvP+ze

spectively. As can be seen, the agreement is excellent for and

mean free paths. It can also be seen that the large mean free

path approximation30) is valid for \/a=0.4, and that for
small mean free path, EqR9) is accurate foi/a<0.4.

3. Calculation of (A&, A£S)

vi(;)=Cvi($)—ZSu-(o)

IX

(38

where c=cos(), s=sin(a), and the numbez=*=1 de-
scribes the stochastic nature of the rotation. A detailed inves-
tigation for finiteM, and a discussion of the limK — oo, is

SinceA¢j, does not depend on the random shift, we firsttedious and will be given elsewhefg]. For «=90°, the

determine the average af¢, over random shifts at fixed
particle coordinate and velocityA & |x)s. For nasX=x,
+v,7<(n+1)a,

case considered here, E437) and (38) reduce to

vi)=2z{) (39)
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and

v)=—z{. (40)
Given Egs.(39) and(40), C,=(A&Dv DA E) can be

written as

” [(n+1)a—ygl/ 7
E, doy
n,m=—o

a
Clz-—aJ.dXO
0 (na—yg)/

b
XJb 1dvxnmV\(vX)W(vy)vxvy, (41
0
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0 01 02 03 04

Ma

05 06 07 08

where all velocities are at equal time, so that we have g 2 The dimensionless kinetic stress correlation function

dropped the indeX0). Note that the average over =1

C1/(kgT7)?, where C;=(A&Pv VA M), as a function of

has already been performed. The limits on the inner integral/a. The bullets are simulation data; the solid line is the analytical

are

bo=[(m+n)a—yo—vy7l/T (42

and

b,=[(m+n+1)a—ye—v,7]/7. (43
If the integral over, is performed, the sum oven can be
simplified, and one obtains

* [(n+1)a—yol/7
> n doyv,w(vy)
n,m=—o

C,= af ad
! 2r 0 Yo (na—yg)/

X exp(—rb3), (44)

wherer =1/(kgT) andf=1/y2m7kgT. Making the transfor-
mationv=v,—na/7+Yy,/7, the limits of the integral over
vy become independent ¢f, and the integral ovey, can
be performed, yielding

c _af27'
Yoarz e

foalrdv exp{—r[(ma—v7)/7]%

X >, nlexp—rc2)—exp —rc)], (45)

n=—ow

wherecy=(natuvr)/r andc,=[(n—1)a+uvr]/7. Simpli-
fying the sum ovenn yields
12

The integral overw can be performed in conjunction with
one of the sums to obtain the result

dv

B aZkBTJ1
= 2 0

exp — —(n+v)?
n;w 2)\2( v)

(46)

an\?

2\

_kBTa)\ 5 ex;{— | @n

1= 2\/; mE

expression folr=90° andM —«, Eq.(47). The dotted line is the
small mean free path approximati@n= —kgTan/(2 \/;), and the
dashed line is the large mean free path approximaf®n=
—(kgT7)2. Simulation parameterdvl=35, «=90°, kgT=4, L
=64.

® 2
Ci=—(keTH)2 S ex;{—(zzm\) } (48)

m=—o

which converges rapidly for large mean free path.

From Eq.(48), it follows that C;— — (kgT7)? for A/a
— o0, which is the result obtained by replacidg, by v, in
the definition ofC;. This result suggests that this might also
be true for correlations at larger time, i.e., f6,, n>1.
Simulations confirm this hypothesis fara=0.4, see Fig.
9(a).

Figure 2 contains a comparison of the normalized corre-
lation function C,/(7kgT)? with simulation data fora
=90°. The agreement is very good for all mean free paths.
The small deviations arise from the fact that the results of
this section were derived in théd — o limit, while M =35 in
the simulations. Equatio8) suggests that the correction fac-
tor is approximately (+2/M).

Since((A&w,)?)=(AEX) (N 7)?, the results of this sec-
tion predict that the initial decay rate of the stress correla-
tions, g=C, /((A&w,)?), is given by

—1[1+a%(61?)]
71 —u2y2)

for NMa>1,

for NMa<l (49)

in the limit M—c. In the continuum approximation, for
N a—oo, it follows thatg=—1, which corresponds to zero
viscosity. For finite\/a, however|g| <1 and the viscosity is
finite. Figure 3a) shows the predicted dependencegodbn
the mean free path.

For the large mean free path, the only significant differ-

which converges rapidly for small mean free path. The Poisence between the continuum approximati@iscussed in
son sum formula, Eq20), can be used to obtain the expres- Sec. Il A) and the calculation presented here occurs intthe

sion

=0 contribution,
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0.19 ¢

0.14

2v,,/(k;T 1)
=]
3

0.04 .
0 0.05 0.1 0.15

1/(M-1)

FIG. 4. The dimensionless kinetic contribution to the viscosity,
2vin/(kgT7), as a function of 1M — 1) for «=90°. The symbols
are simulation data, and the solid line is a fit with 1.0864 1)
+0.0473. The agreement with the predicted behavior, (&8), is
excellent. Parameterd/a=2, L=64, kgT=4.

M>1+6(Na)2. (53

In most applications in two dimensiong,=90°, A/a=1,
0 20 40 60 80 100 120 140 160 180 and 5=M =50, so that this correction is practically never
Rotation Angle o negligible. Note, however, that this is true only in two di-

mensions and for~90°, where kinetic stress correlations
FIG. 3. Plots of analytic expressions for the initial decay rate ofgscillate and decay extremely slowly. It was previously be-
the kinetic stress correlationg=C, /Co. (8) gas afunctionoh/a  |ieved that high Reynolds numbers could be achieved in this
for a=90° andM—c. Note the plateau foh/a~0.25 and the  |imit by choosing a large value of M in order to have a small
subsequent rapid decreasegin(b) g as a function ofx. The solid jiscosity. It is now clear, however, that this is problematic for
line is a plot of Eq.(59), which describes the behavior faa 4y reasons. First, the minimum value for the viscosity is
<1. The dashed curve is the continuum resght:,cosz(a), valid a2/(127), and not zero, foM—o, and second, this is a
m;;\slsgdminagz '?égezM' Here and in the following all angles are o, o0 gical limit since the kinetic stress correlations oscil-
9 : late in sign and do not decay.
In order to verify the dependence on W{1) in Eq.
COE(|2(9,0)|I2(§/,0)>Q% D (VA& ALY (52), we performed a series of simulations at fixed large
T mean free path\/a=2, and plotted the kinetic part of the
viscosity as a function of 1l —1). The result is indeed a
_ ngT«Ag )2), (50) linear curve, Fig. 4, which can be fitted byw2,/(kgT7)
T Y =1.06/(M —1)+0.0473. Equation52) predicts 1/M—1)
+0.0417, which is very close. Consider now the effect of a
) - finite mean free path at fixell. In Fig. 5, v, is plotted as
tions arising from the cell structure, but they must be Propor~ finction of A/a. In particular, we want to investigate

tiona_\l to some power OB/X, si_nce they must vanish in the whether the second term in E&2) is indeed proportional to
continuum limit,a/A — 0. We will therefore neglect them for (Ma)2. The fit in Fig. 5 gives (1/5.141)\/a) %8 for this

the moment. Using the large mean free path limit, &), term, which is again in good agreement.

for ((A£,)?) in Eq. (50), it follows that there is an additional Figure 6 shows measurements of the normalized viscosity
contribution to expressioitll) for the shear viscosity de- 5 large and small mean free paths as a function of the rota-

to the shear viscosity. There might be addition&l ldorrec-

rived in the continuum limit in Sec. I A, so that tion angle. It can be seen that B§1) is in excellent agree-
KeT 7T 1 a2 ment with the data around 90°. In contrast, without the cor-
p= -2 ( — )+_, (51)  rection term, the agreement is much worse; see FHf.
2 \(1-1M)sin(a) 127 Figure 7 shows the total viscosity as a function of mean free
For «=90°, this equation can be written as path.
keT7( 1 1/a\2 5. Calculation of (A£ PP A v (V) at arbitrary angle,
— = Na<l
V 2 { M - 1 + 6 )\' J ' (52) . . . .a .
Consider again the limitM —o, but now for arbitrary
so that at finitea/\, corrections are important for scattering angler, so that collisions are described by Egs.
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0.20 | "
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T 0-15 r \\‘ //,r
g« \\ ./,/'/
: \“ . ————___—
I 0.10 AN P
© ., © ewea=e=t ]
L >
vy
= 0.05 \o\\ 0.05 |
5 ~~~~~~~~~
(?1 """"" -

0.00 ' : : . :

0.5 1.0 1.5 2.0 25 3.0 0 0 0‘5 1 ] ‘5 2
Ma AMa
FIG. 5. Zvin/(kgT7)—1/(M—1) as a function oi/a for o FIG. 7. Dimensionless shear viscosity measured at short times

=90°. Symgols are simulation data, and the dashed line is the f'ﬁs a function of the mean free path. The bullets are simulation
0.1945¢/a)”, W'thz ¢=—1.9988. There is good agreement with o ,ts for7/a2. The dashed line is the theoretical prediction for
the predicted X/a) /6 behavior. Parameterd =35, L =128. thekinetic part of the shear viscosity, given by H§2). Parameters:

M =35, a=90°, L=64.
(37) and (38). Only the limit A/a<1 will be considered in

this section, so thak¢, can only take the values a, 0, and _U(l)T) Similarly, if |U(0)|<|U(l)| it contributes only if it is
a. The case of arbitrary mean free path will be considereqycated in the mterval;(L a— U(y 7,yu=a). The probabil-
elsewherg5]. ity that a particle in a given cell contributesAq _; is there-

For N/a<1, there are only two contributions t€;  fgre

=(AEPV DA ,(;)vl(l)> In the first, which we denote by
A one hasA&é®=a and A (1)——a in the second, T
1,-1 flx g p]_ 1:_min(U§/O) ,_U§,l))- (54)

A 11, A&D=—a andA&P=a. Other possibilities are ei-
ther identically zero—if one of thA ¢ is zero—or occur with
an exponentially small probability ~exp(-a?/A?)], since  Using Egs.(37) and(38), and the restrictions @v{”<a/r
they involve particles traveling distances of the ordenof  gng— a/7'<v(l)<0 we have
Consider firstA; _;. In order forA¢® to be equal taa,
v{® must be positive; becausea<1, it is also less than , (&7 dg

a/r Similarly, in order thatA¢=—a, we need—a/r Ar-1=-a J dvyJ' P1-1dvswy{Cux
<v{M<0. A particle with [v{”|=[v{"| will contribute to

A, if it is located in the interval yL a—v{Vryu=y, +suylw(v)w(vy), (55

where superscripts (0) have been dropped. Equa&bnis

o 03 A T written for z=1; the final result derived below is the same
= - \ ; for z=—1. The limits on the integral are
=1 r ' H
Q | : ;
ﬁ 02 - l :,' _ d0= va/S (56)
=) i \ ! o
3 i ! and
= !
72] !
E 01 F * i dy=(alm+coy)ls, (57)
=]
= where, as before; ands are the cosine and the sine of the
g . ] rotation anglex, respectively. Finally, if Eq(54) is used, we
£ 0 ' : : find
= 0 60 120 180

. alt d2

Rotation Angle o Ar1= _aTJO W(v,)dv, L W(0, )0y 00 y($2—C?)
0

FIG. 6. Dimensionless shear viscosity measured at short times
as a function of the rotation angke. The bullets are results for
v r/a? at the small mean free path/a=0.028. The solid line is a
plot of Eq. (71). The inverted triangles are data fof(kgT7) at
large mean free path/a=2. The dashed line is a plot of E(R1).
The system size is 6464 andM = 35.

dy
+Cs(v)2<—v)2,)]dvx+ J'd W(vy)vyvy
2

X[cvy+ Svy]dvx], (58)
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with d,=(1+c)v,/s. For symmetry reasons, the other con-than a cell size is justified. The stochastic rotation of veloci-
tribution to C;, namely,A_, ; is equal toA; _;. Evaluating ties in the collision step transfers momentum between the

the integrals, we have two parts of the cell. Thex component of this momentum

transfer is
kgTan J1+c
C,=— Bf cJE+T(1—3c) , (59 M,
i Apy(h) =3, [vi(t+ ) =vix(D)] (65
so that -
C,=0 for a=0°, (60) Averaging now over the sign of the stochastic rotation angle,

we have

kgTan [ 1 5
o 2l

G

Co=kgTany2/mr for a=180°. (62)

for a=~90°, (61 Apy(h)=(1-c)M(uy—uyy), (66)

where we used the evolution equati®), with c=cos().

The y component of the velocity does not appear in this
expression because the average of the sine of the rotation
angle is zero. UsingMu=M u;+M,u,, the differenceu,

— U4 can be rewritten aM,(u,x—U;,)/M, so that

Equation (61) agrees with the smalk limit of Eq. (47).
Simple arguments can be used to show that the limits
=0° and 180° are also correct.

Figure 3b) shows the angular dependence of the rgtio

=C,/{(A&,v,)?), which describes the initial decay of the o o hfoh
stress<corr)élatio>ns. The behavior at small mean free path is Apx(h)=(1=c)M(ux, ul'X)a 1 al’ (67)
clearly qualitatively different than that for large. In par-
ticular, the symmetry around=90° is lost at smalk. Averaging over the positiom of the dividing line corre-
sponds to averaging over the random shift of the grid. Doing
IIl. ANALYSIS OF THE ROTATIONAL AND MIXED this, we have
CONTRIBUTIONS TO THE SHEAR VISCOSITY
. N . o 1(a

A-. Simple appr(-mmatloh -for the rotatl-onal CO-I’I'[I’Ibu'[IOI’l - (Apy)= EJO Ap,(h)dh= %(1—C)M(U2,x— Ur,). (68)

Since the particle collisions occur in a shifted cell coordi-
nate system, they result in a transfer of momentum between, ) ]
neighboring cells in the originainshiftedreference frame. Finally, if we approximateiu,/dy by
For N/a<1, this rotational contribution is much larger than
the kinetic contribution and determines the value of shear Uy _ I(a)2 69
viscosity. Simple kinetic arguments can be used to obtain a ay = (Uix—uzx)/(al2), (69)

surprisingly accurate expression for this rotational contribu-

tion to the shear viscosity. Consider a collision cell of sizethe shear viscosityy, which is defined as the ratio of the
aXa oriented parallel to thg andy axes, and divide the cell tangential stres®,, to du,/Jy, can be expressed as
by the liney=h. The line y=h represents the boundary Y

between cells in the original unshifted reference frame. Since

) . A : Pyx  (Apy/(ar)
we consider only momentum transfer in th&irection, this 7= = , (70)
one-dimensional shift operation is sufficient. Assuming a ho- Iyl 3y Uy 9y

mogeneous particle distribution, the upper part of the cell _ _ _ _
containsM; =M (a—h)/a particles on an average, while the Since the tangential stre$y, is the mean increase, per unit
lower part havl,= Mh/a particles, withM ; +M,=M. The  time and unit length, of th& component of the momentum

mean velocities; andus, in the upper and lower partitions ©f the gas across the line=h. Using Eqgs.(68) and(69) in
are Eq. (70), we obtain the result

ul_M_liZ:lvi (63) y= 1—27[1—cos(a)] (71)

and for the kinematic viscosity in the limit of small mean free

path. We checked the dependence of the viscosity on the

rotation angle, Fig. 6, time step, temperature, and cell size,
Vi, (64) . .

Fig. 7, and found very good agreement between the simula-

tions and Eq(71) in this limit. Although this derivation is
respectively. Since the mean free path is assumed to be vegpmewhat heuristic, it gives the prefactor with an unexpected
small, the definition of mean velocities on scales smallemccuracy, as can be seen in Fig. 6.

M
1

U2:_

My i=My+1
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B. Calculation of rotational and mixed stress correlations
at equal time

We learned from simulations that the temporal correla-
tions of the rotational and the mixed part of the stress tensor
usually decay very rapidly. Hence, the significant contribu-
tions to the rotational and the mixed viscosity come from the
first two to four terms in the sum in E¢Ll). We will concen-
trate only on the first term, the correlations at equal time, and
compare them to the numerical values.

<o(t) 6(0)>

1. Rotational term

The t=0 contribution to the rotational part of the shear
viscosity is

02! | | | b Vrot(0) =(071(0))/(2NkgT7), (72)

0.15 \ 1 with
- -— N

0.1
<Ur20t(0)>:i2j <AviyA§?xAvij§jsx>' (73

0.05 {

AN B Tt N T O
o} ‘ In contrast to the calculation of the kinetic stress correla-
tions, off-diagonal contributions to Eq73) are not negli-
-0.05 N\~ gible, even for largeM, and we have to adopt a different
approach.

01, 5 10 15 20 Although the following arguments are easily generalized,
consider a specific random shift vectbr (b,0) with b
e[0,a/2). In this case\ &, = —a for all particles located in

a strip of widthb located on the right edge of a cell. The
average number of particles in this stripHs=bM/a. For all
other particles in the cell &, =0. This means that in every
cell, only P particles contribute tgo2,), and we can sim-
plify expression(73). Averaging over all possible shifts leads
to

v(t)

Time

<w(t) w(0)>

2 al2 P 2
(o,ot(0)>=2aL2L db ziAviy) , (74)

where the sum runs over all particles located in the strip at
i the right edge of the cellL? is the total number of cells.
Time Using Eq.(3) for the stochastic rotation of thecomponent

of the velocity, one finds

FIG. 8. Simulation results for small mean free patta P

p M P P
=0.113, anda=90°. (a) Transverse stress correlations as a func- 2 Aviy=(1—C)M E viy+(c— 1)2 viy—sz Vix
tion of time. Dotted line @), rotational part{c,q(t)o0:(0)); : ! : :
dashed line @), kinetic part(oyin(t) okin(0)); solid line, mixed p M
part { oyin(t) o,0t(0)) + {0 0t(t) okin(0)). (b) Various contributions +5— E Vi s (75)
to the shear viscosity obtained by summing the stress correlation M 5
functions from (a). Dotted line @), rotational viscosityv,;
dashed line @), kinetic viscosityv;,; solid line, contribution of  where EiM is the sum over all particles in the cdih the
the mixed term to the viscositysx. (C) Vorticity correlations  shifted systemn and=} is the sum over the particles in the
(wi(t)w_i(0)) as a function of time for three different wave num- strip. ¢ and's are the cosine and sine of the rotation angle,
bersk (thick solid curves The thin dashed-dotted lines are fits with respectively. Assuming ideal gas correlatiomsiavjﬁ>

the function_ expfy,:ilth). The_fitted lf—de_pende_nt vis_cositie:apit _ 5”_ 5aﬁkBT: one obtains

are upper linek=0.3927, vg;;=0.08; middle line,k=0.555 36,

v =0.08; lowest line,k=0.8781, vg;=0.079. Parameterdyl P 2 =

=35, L=16, 7=1, time average over 30000 iteration steps and < 2 AUiy) > =2(1—C)P( 1— _) kgT. (76)
two different initial conditions. i M
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FIG. 9. Simulations results for intermediate mean free path, FIG. 10. Simulation results for small mean free paiia
NMa=0.632, anda=90°. (a) Transverse stress correlations as a=0.113, andx=120°. (a) Transverse stress correlations as a func-
function of time. Dotted line @), rotational part oo(t) o76,(0));  tion of time. Dotted line @), rotational part(oo(t) o01(0));
dashed line ¢ ), kinetic part(oyin(t)oyin(0)); solid line, mixed ~ dashed line ¢ ), kinetic part{ayin(t) oxin(0)); solid line, mixed
part{ oyin(t) o01(0)) + (061(t) 0%in(0)). (b) Various contributions  Part(oin(t) oro1(0)) + (o ot(t) oin(0)). (b) Various contributions
to the shear viscosity obtained by summing the stress correlatiolp the shear viscosity obtained by summing the stress correlation
functions from (a). Dotted line @), rotational viscosityv,,,;  functions from (a). Dotted line @), rotational viscosityv,q;
dashed line ¢ ), kinetic viscosityvy;,; solid line, contribution of ~ dashed line ), kinetic viscosity,; solid line, contribution of
the mixed term to the viscosity,,x. (c) Vorticity correlations the mixed term to the viscosityy,. (c) Vorticity correlations
(wy(t)w_,(0)) as a function of time for three different wave num- (W(t) w_,(0)) as a function of time for three different wave num-
bersk (thick solid curves The thin dashed-dotted lines are fits with bersk (thick solid curveg The thin dashed-dotted lines are fits with
the function expf vgk2t). The fitted k-dependent viscositiess;  the function exp{ vrkt). The fitted k-dependent viscosities;
are upper linek=0.3927, v¢;;=0.087; middle linek=0.55536, are upper linek=0.3927, vg;;=0.128; middle linek=0.555 36,
e =0.087; lowest linek=0.8781, v =0.086. Parameters  vgiy=0.128; lowest linek=0.8781, vg;;=0.128. Parametersv
=35,L=16, 7=1. =35 L=16, 7=1.
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InsertingP=bM/a and integrating oveb yields estimate includes the overhead caused by the evaluation of
) the transport coefficients, and would therefore be smaller for
a X X
2 \_ real production runs. For systems with a larger number of
=—[1l-co NkgT, 7 . ) ,
(o700 3 [ @) INke 7 particles,N=3x10°-6x 10°, the average CPU time per it-

eration and per particle increased to about 3s3
Note thatv,,(0), Eq.(78), is up to a factor of 2 larger
a2 than the viscosity measured at small mean free path, Eq.
vrot(O)=<crr20t(0)>/(2NkBTr):6—[1—cos(a)]. (78  (71). This means that the contribution from the next term,
T (or0t(7) 010:(0)), is not negligible(for A<a) and must be
2. Mixed term negative. This is clearly visible in our simulations, see Fig. 8.
For large mean free path, see Fig. (%;,0:(7)o01(0))
was found to be approximately zero, i.@(0) is approxi-

so that we have, finally,

The equal time contribution of the mixed term to the total

viscosity is . .
Y mately equal tov,y;. In Fig. 9a), it can be seen that the
N decay rate of the kinetic stress correlations is larger ftom
Crnix=2(070t(0) 0in(0)) = ZiEj (A& AEADjy). =0 tot= r than for larger values df This is consistent with

Egs. (48) and(49). Plotting the data in Fig. (@) on a loga-
rithmic scale(not shown confirms the hypothesis made fol-
Here we will make the assumption that only the diagonalowing Eg. (48) that the ratio of higher-order terms such as

(79

terms contribute, i.e., C,/C4, C3/C,, etc., is constant and given by the continuum
© 1)) . approximationg=C,/C,, on the other hand, contains finite
Crnix=2N(viy (viy’ —viy ))(A&ix AEY)- (80 a correction terms.

Figure 10 shows the temporal behavior for the kinetic,
rotational, and mixed stress correlations for an equilibrium
system witha=120°, M=35, and\/a=0.1129. We mea-

1 12 1 sured the value$i(o?,(0))=0.481, h(o1(0)0in(0)) =
s~ > S —0.056, anch(aZ,,(0))=0.09, whereh=7/(a’NkgT) is a
mon=ln normalization factor. These values are generally in good
X\ 2 agreement with the theoretical results obtained from Egs.
xexp{—ZWan(—) ] :
a
The zeroth-order contribution to the viscosity is therefore

Using expression(36), and the evolution equation for the
velocities, Eqs(2) and (3), we find

Chix=—a?[1—cod a)INKgT

(8)  (77), (8D, (28, and (50), namely, h(a%,(0))neo=0.5,
h(0t(0)kin(0))theo= — 0.0675, and h<UEin(0)>theo
=0.09. The largest discrepancy is for the mixed contribu-
tion, which is overestimated by about 20%. This is not sur-
prising, however, since we neglected the off-diagonal contri-

2

Chmi a 1 1
Vmis 0) = ZN;'_XFsz[l—cos(a)] s bution in the derivation of Eq(81).
B ™ For larger mean free path/a=0.632 anda=90°, see
=g N2 Fig. 9, the agreement is very good for all three quantities. We
<3, Sod 23] H 82 found h(o?,(0))=0.32 (theory, 0.33),h(7(0)yin(0))
n=1n a = —0.084(theory, 0.0833), anti(c2,,(0))=0.565 (theory,
In the limit A <a this gives 0.564).
a2 N Cancellation of errors
Vmix(0)~ [1-coga)]~. (83 Figure 11b) shows the various contributions to the time
V2mT a

dependent viscositgi.e., the integrated stress correlations up
to timet) for «a=60°, M=35, and\/a=0.1129. The heu-
C. Comparison to simulations ristic derivation of the rotational contribution to the viscosity

A set of simulations was performed to evaluate the vari-given in Sec. lll A, Eq.71), predicts a value 0.0416 for the
ous contributions to the stress correlations and to measuMsScosity which is in excellent agreement with the measured
the transport coefficients. The results are presented in Figétal viscosity 0.042. The value we get for the rotational
8—11. After a short equilibration time, averages were typi-contribution from the Green-Kubo formula, see Fig(dlis
cally performed over 30 000—60 000 time steps. For simula9.062, i.e., is about 50% larger. This means that the contri-
tions with N=20000-150 000 particles and system size butions from the kinetic and the mixed part, which were not
=64 or 128, the CPU time per time step and per particle wasncluded in the derivation of Eq.71), are equal to—0.02,
between 1.8 and 2.8s on an IBM SRserial code, 375 MHz and not negligible, even at this small mean free path. It ap-
Power3 processprdepending on whether the cell shift was pears that this cancellation occurs for a wide range of rota-
implemented or not, or whether the rotation angle was 90%ion angles, between 30° and 160°, for reasons we do not yet
(the computationally most efficient valueThis CPU time  understand.

066706-11



T. IHLE AND D. M. KROLL PHYSICAL REVIEW E 67, 066706 (2003

0.2

0.1
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FIG. 11. Simulation results for small mean free patha=0.113, anda=60°. (a) Transverse stress correlations as a function of time.
Dotted line @), rotational parf o,o(t) o,0:(0)); dashed line ¢ ), kinetic part{y;,(t) o4in(0)); solid line, mixed part o, (t) o0:(0))
+(o0(t) okin(0)). (b) Various contributions to the shear viscosity obtained by summing the stress correlation functioria) frowtted
line (@), rotational viscosity, ; dashed line ¢ ), kinetic viscosityr,;, ; solid line, contribution of the mixed term to the viscosity;;y .
(c) Vorticity correlations{w,(t) w_,(0)) as a function of time for three different wave numbkr&hick solid curves The thin dashed-
dotted lines are fits with the function expgg; k’t). The fittedk-dependent viscosities.;, are upper linek=0.3927, vg;,=0.045; middle
line, k=0.555 36,v;;=0.043; lowest linek=0.8781,v;;=0.043. Parameters! =35, L=16, 7=1. Here and in the following all times,
lengths, and masses are given in internal units of the simulation. The internal units for viscosities and other quantities follow from those
definitions. In those units the time step is equaktdhe mass is equal to 1, and the lattice constant of the grid is eqaal to

IV. ANALYSIS OF THE BULK VISCOSITY via the Green-Kubo formula, see Fig. 12, confirm that the
Continuum approximation, Afa—s e bulk viscosity is essentially zero and has no long-time tail.
The kinematic bulk viscosityy can be determined in a V. ANALYSIS OF THE THERMAL DIFFUSIVITY
similar fashion. In particular, taking nokvin the x direction ) o
anda=8=1 in Eq. (54 of Part 1, we have A. Continuum approximation, A/a—
The Green-Kubo relation for the thermal transport coeffi-
(84) cient is given in Eq(57) of Part 1, and the corresponding
flux in Eq. (55) of Part 1. In the limit of large mean free path,
we can make the same approximations as in Sec. Il A. In two

Employing the same approximations as in Sec. Il A, 0N€jimensions, taking in the x direction, we then have
finds ’ '

Yt y= WTBT 2 (12 0)12(%.1).

N
(12,0 [12(x,n7))=N(Kg T)’[ £+ 7]". (85) IM(R,t):;[v%<t>/2—cpT]v,-x<t>. (86)

This is the same result as that obtained in Sec. [Isée Eq. R R

(10)] for (1,(y,0)[1,(¥,t)), the corresponding term in the Defining E,=(l4.:5(X,0)[l4:2(X,n7)), and using the same
Green-Kubo relation for the shear viscosity. It follows thatanalysis as in Sec. Il A, one has

the bulk viscosity is zero for this model. This is the same 3 5 o

result as for an ideal gas. Measurements of the bulk viscosity E1=2N(kgT)°[£1(£1+ %)+ 7], (87)
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FIG. 12. Temporal behavior of bulk and shear viscosities deter- 030 60 90 120 150

mined from the Green-Kubo relations. The dashed line is the kinetic
contribution to the sum of bulk and shear viscositieg,, + vkin »
obtained from the longitudinal stress correlations. The solid line is k1. 13. Dimensionless thermal diffusivigy; /(kT 7) at large
the total measured bulk and shear viscosities,y; the dotted line  0an free pathy/a=2, as a function of the rotation angte The

is the result forv determined from the transverse stress correlationsgashed line is the theoretical prediction, E89). ParametersM
The good agreement of these results indicates that the bulk viscosit;g35, ksT=4, L=64. Here and in the following all angles are
v is negligibly small at all times. Parametegt=5, L=64, « measured in degrees.

=60°, kgT=0.0413,\/a=0.203; time average over 130 000 time
steps and over 40 different initial seeds of the random number gen-
erator.

Rotation Angle o

The t=0 rotational contribution to the Green-Kubo rela-
tion for the thermal diffusivity[Eq. (51) of Part 1] in two

. dimensions is
where n;=2(M—1)(1—c)?/M?3 and{, and{, are defined

in Sec. Il A. The two terms in Eq87) are the diagonal and 1 )
off-diagonal contributions, respectively. Similarly, one finds D1rot(0)= W(UT,rot(0)>v (90)
En=2N(keT)*[¢1(L5+ 9+ 7", (88  with
so that N
<0-'2r,rot(0)>:i§j: <Avi2A§inAUj2A§ij>' 91

kgT 1+§1(§%+§§)+ 71
Dr=— . 89
T2 0G5 -m ®9

The approach of Sec. lll B 1 can be used to show that

3

B. Measurements

Figure 13 shows the thermal diffusivity as a function of
rotation angle. As can be seen, there is very good agreement
with the theoretical prediction, Eq89). Figure 14 shows 2
that the kinetic contribution to the heat diffusivity is much

=

larger than the rotational contribution, even at small mean 5,
free path. Furthermore, it can be seen thatdiverges loga- %
rithmically with time, as predicted by mode-coupling theory a 17
[6,7].
C. Calculation of the rotational part of the thermal diffusivity 0
As can be seen in Fig. 14, the rotational contribution to 0 00 200 300
the thermal diffusivityD+ ;o , is small compared to the total Time

diffusivity and can be neglected even at small mean free path FIG. 14. Long-time tail of the dimensionless thermal diffusivity

A a~0.1. Figure 14 also shows that tha¢ . is essentially  p_/(k,Tr) (solid curve as a function of time for smaM =5. The

independent of time, which means that only the0 equal  gashed line is the fit 1.8760.115 Inf). The small deviation at
time correlations of the heat flux are nonzero. This contribu—~220 agrees well with the recurrence time for sound wavss,

tion can be determined using the approach applied in Sec=222.7. The lower dotted line is the rotational part of the thermal
B 1 to calculate a similar contribution to the rotational diffusivity, D+ o, which is predicted to be small; see E§5).
part of the shear viscosity, EG78). ParameterskgT=0.0413,L =64, A\/a=0.203, «=60°.
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al2 P 2 10°
(07 ror(0))=2aL? fo db< ( 2 Av?) > (92
=
10'
where Av?=v?(7)—v?(0), and the sungoes over allP
=hbM/a particles located in the strip at the right edge of the 10°

cell. Using the collision rule$2) and (3), one finds

P 2
< (2 Av?) > =16(kgT)2(1—c)P(M—P)/M2.
i=1

(93 10 |
InsertingP=bM/a and integrating oveb, we have, finally, -
8 10 0 60 120 180
(0F r01(0)) = g7 @*N(1=0)(kgT)?, (94) Rotation Angle o

. . . L FIG. 15. Dimensionless self-diffusion constddt(kgT7) as a
so that the rotational contribution to the thermal diffusivity at ¢, tion of the rotation angle (solid line and bullets The dashed

time zero is line is a plot of approximatior(101). ParametersM =35, kgT

1 a2 =0.012 75,\/a=0.113,L=32.
D 0)=——(1-c). 95
rrol 0= 57 (17¢) %5 The sums can be rewritten as
It is now clear why collisions do not make a significant con- n-1n-1
tribution to the thermal diffusivity, even at smalla. The 2 > (vi(j7)-vi(kn)
correlations of the heat flux contain the internal energy, =0 k=0
which is proportional to the sum of the squares of the relative n-1 n-2 n-1
velocity vectors. The spe_C|aI nature of. the collision step in = 2 <Ui2(j7)>+22 2 (Vi(j ) -vi(k7))
stochastic rotation dynami¢SRD)—rotations of the relative i=0 j=0 k=j+1
velocity vectors—leaves the length of these vectors invari- n1

ant. For largeM, the relative velocity of a particle is essen-
tially equal to the velocity itself, so that rotations do not
transfer heat. This is the source of the factavllih D o,
implying that collision contributions to the thermal conduc- Restricting ourselves td= 2, and making the same approxi-
tivity are negligible in practical applications, wheM is  mations as in Sec. Il A, one has

generally much larger than 1. Evaluating E5) for the

parameters of Fig. 141=5, 7=1, kgT=0.0413,c=0.5, (vi(0)-v;(k7))=27KgT, (100
a=1 givesDt ;(0)=0.016 66, while the measured value

from Fig. 14 is 0.012 275, which differs only by a factor of so that
1.357. This difference might be due to the fact that we have
neglected fluctuations in the number of particles in a cell; for 7 o

M =5, these fluctuations are not negligible. D:r!'m ins 2nkBT+2j§=:l j8 ! | =keTr

—00

:no||<BT+221 j(vi(0)-vi(n—j)7). (99)
=

n—1

{1 }
1-44)
(101)

S+

VI. ANALYSIS OF THE SELF-DIFFUSION CONSTANT

The same result can be obtained using the discrete Green-

The self-diffusion constarlD of particlei is defined by Kubo relation

1

:' — . —F. 2 oo
P t'TlZdtm'(t) (). =9 D= 20’<vi(0>-vi<t>>. (102

t=

[oN

The position of the particle at time=nr is . I
b P T In Fig. 15, the diffusion constantmeasured as small

n-1 times is plotted as a function of the rotation angle and com-
r(t)=r(0)+7>, vi(kr), (97)  pared with Eq.(101). For angles not too close to 180°, the

=0 agreement is very good. It follows from Eq401), (51), and

(71) that the Schmidt number Scv/D is smaller than or of

the order of 1 for large mean free path. However, Xda
n—1n-1 <1, very large Schmidt numbers can be obtained since Sc
<[fi(t)—fi(0)]2>2722 E Vi(j7)-vi(k7)).  (99) ~(a/_)\)2. Sc can be further increased by going to larger

j=0 k=0 rotation angles, wher® becomes very small.

so that
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Correction term T T

Fork=2, Eq.(100 is not exact. It neglects contributions
from situations in which particles that are in the same box at
timek, 7, 0<k;<k, are again in the same box at a later time
ko7, ky<k,=<Kk. In contrast to the situation with the viscos-
ity, these terms are not of the order oM or smaller; they
are of the order of-(1—c)/M, i.e., of the same order as the
leading corrections for finite particle numbkt. The prob-
ability that such multiple encounters occur increases the 0.040 . .
longer a particle stays in the same cell, Which is t_he case for o 100 200 300
small mean free path and strong backscattering, i.e., at large Time
anglesa. This is consistent with the results shown in Fig. 15
for \/a=0.11, where deviations at larger angles can be seen. FIG. 16. Various contributions to the shear viscosity as a func-
A detailed analysis of these corrections goes beyond th#on of time. The lower solid line is the kinetic pas;, and the
scope of this paper; however, we can gain some insight intyPper solid line is total viscosity. Both exhibit the same logarith-
these corrections if we consider the worst case scenario §fi¢ Pehavior. The functioa +bin(t) (long dashed lingsis shown

zero mean free path. In this case, particles remain in th pr comparison. The deviation at tinte-200 S C.aused by t.he re-
same cell. and currence of sound waves. The top dashed line is the rotational con-

tribution v, which is essentially constant at long times. Param-
_Ck) eters: «=60°, N/a=0.2, M=5, kgT=0.0413. Lower curvea

0.060 |

0.050

Shear Viscosity

(103 =0.0435,b=0.0017; upper curvea=0.0497,b=0.0018. Time
average over 130000 time steps and over 40 different initial seeds
of the random number generator.

(vi(0)-vi(k7))= 2kBT( ck+

As expected, this result differs from E¢LOO by terms of
O(1/M) for k=2. Although thisA/a—0 limiting case is _ _
pathological, it does show the existence of additionalFirst, from Egs.(104) and(105) it can be seen that the am-

O(1/M) corrections to the self-diffusion constant. plitudes of the tails are large at low density and small vis-
cosity. Hence, we take a small number of particles per cell,
VIl. LONG-TIME TAILS M=5 and M=10. Furthermore, in order to have a small

viscosity and diffusion constant, the temperature should not
There is a renormalization of the transport coefficients—pe too large. High temperature also means a large speed of
the viscosity, the diffusion constant, and the therma'sound,cS:/ZkBT, so that the time, = L/c, for the recur-
diffusivity—at long times due to long-time tails in the corre- rence of sound waves would be too small. On the other hand,
sponding autocorrelation functiof§,7]. In two dimensions, the physical origin of the long-time tails is the so-called
these correlation functions are predicted to behave taatl/ packflow effect, in which a moving particle creates vortices
large times, and this leads to transport coefficients that dithat couple back to it and push it further in the already cho-
verge logarithmically with time. Specifically, mode-coupling sen direction. These vortices need some tigi® develop. A

theory predicts final requirement is that there be no other slow relaxation
) ) process which could mask the tail. This means that tails can
(T (1) y(0))~ (ksT) d°-2 n 1 only be observed in the time window betwegnandt, ;
IYRTIEXY pd(d+2) | (87ut)¥2 (47T t)%2 furthermore, the smaller the value &f, the larger the signal

(104 to noise ratio. We found in the simulations thatalso de-
creases with increasing temperature.
and Although the viscosity ind=2 has a minimum atx
=90° for moderate to large mean free paths, as discussed
d—1 kgT 10 above, the oscillatory decay of the kinetic stress correlations
pd [4m(v+D)t]92 (109 in this case is very slow. In order to avoid the possibility that
this slow decay could interfere with the measurement of the
at large times, wher® is the bare self-diffusion constant, long-time tails, a rotation anglee=60° was chosen, for
is the number density~M in our method, d is the dimen-  which the decay is rather fast. In order to reduce the statis-
sion, and tical noise to acceptable levels, a time average of the stress
correlations was taken over 130 000 time steps, and an aver-
age over thex andy directions was performed. We also av-
eraged over 40 runs with different initial conditions. For this
set of parameters arid=64, we were able to directly mea-
is the sound attenuation coefficient, whé@e=X\+c,/c, is  sure the logarithmic behavior of the shear viscosity; see Fig.
the thermal diffusivity, and the thermal transport coefficient16. We found that only the kinetic part of the stress tensor
Nt is defined in Eq(57) of Part 1. contributes to the 1Aail in the stress correlation function; no
In order to resolve the tails in a simulation, parameterdails could be detected in either the rotational or mixed con-
have to be optimized to obtain a large signal to noise ratiotributions.

(Ux(Hvx(0))~

2(d-1)

=g vt

Cp
2-1|p; (106)

v
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If we use Eq(104) in the continuum Green-Kubo relation

for the shear viscosity, the asymptotic behavior of the viscos- 10"
ity in two dimensions is predicted to be

A

v(t)~kgTdgIn(t), (207 ..3*10'2

&
with dg=a?(1/v+ 1Ty)/(327M), wherea is the cell di- %
mension. At timet=100 we measured a shear viscosity =
=0.058 and a thermal diffusivit{p1=0.096. The bulk vis- #10°
cosity was zero within the error bars. Using tihe 2 ideal 3_5
gas valuec,/c,=2, we obtain the theoretical predictial v
=0.0475. A logarithmic fit of the measured temporal behav-
ior of the viscosity gives

Time
v~0.0492+0.001 88 Irft), (108

leading tody=0.045 52, which is only 4.5% smaller than the 10"

value predicted by theory. In order to investigate the density
dependence of the long-time tails, another simulation was
conducted with twice as many particles per ckll=10. We
found that the amplitudd, of the tail was exactly half that
measured foM =5, as expected.

We have also measured the amplitude of the long-time tail
of the velocity autocorrelation function, and obtained a result
that is within 15% of the predicted value. The numerical
effort in this case was smaller than for the viscosity measure-
ment because we could also average over all particles. In the
simulations of (v (0)vi(t)) we also performed an en- 10° 10 10°
semble average over 1000—2000 different initializations of tt
the random number generator, which required CPU times s
between 5 and 10 h fdr=64 andM =5-10. Figure 1@ FIG. 17. Long-time tail of the normalized velocity autocorrela-
shows the Y/tail of the velocity autocorrelation function for tion function averaged over all particles and 2000 initial seeds of
two different particle densitied) =5 andM =10. Again, we  the random number generaté®) (vix(0)vix(t))/(vZ(0)) vs time
observe that the amplitude is proportional t01/M, as  for M=5 (upper dotted curyeandM = 10 (solid curve. The long-
predicted by Eq(105. Figure 17b) contains plots of the dashed line is the fit 0.06&/ The dashed line is the fit 0.036/
normalized velocity autocorrelation function Parametersa=90°, kgT=0.0413,L=64, 7=1. (b) The normal-
(vix(0)vix())ts/[ 7(vix(0)?)] as a function of the scaled ized velocity autocorrelation functiofvix(0)vix(t))ts/[ 7(v5(0))]
time t/tg, wherets=L/\2kgT is the recurrence time for as a function of the scaled tintéts, wherets=L/y2kgT is the
sound waves, for two temperaturekgT=0.01275 and recurrence time for sound waves. The solid curve corresponds to
0.0413. Both curves show the same behavior, namely, a pe%lﬁTzo-Olz 75, while the dotted curve is for_ a larger te_mperature
at large times,t/ts~L, due to the recurrence of sound kBT=O.0413: The Qash-dotted line is the fit 0.0884:&/hlle the
waves, as well as the onset of the tail at the same rescalélgsShed line is the fit 0.0683/Other parametersy=290°, M =5,
time. L=64,7=1.

As an additional test for this scaling behavior, we coupled
to a heat bath using a stochastic method similar to that dezorrelation function is a sensitive function of the nonlineari-
scribed in Ref[11], and found that the correlation functions ties in the hydrodynamic equations and the possible exis-
in the canonical ensemble are the same as in the microcgence of spurious invariants, such as occur in conventional
nonical ensemble if the time is rescaled by a factorn/8f  lattice gas automatdLGA) [8,9]. Simulations of LGA
This is exactly the ratio of the adiabatic and isothermalshowed a long-time tail in the stress correlations, but the
speeds of sound, i.e., the thermalization reduces the speed gfefactor is altered by spurious invariants. To our knowledge,
sound from\2kgT to JkgT. Botht, andtg are therefore molecular dynamics simulations with soft potentials have, so
determined by the speed of sound. far, failed to confirm this tai[10], probably because the ki-

We also measured the long-time behavior of the thermahetic contribution to the stress tensor, which is responsible
diffusivity, Fig. 14, and the bulk viscosity, Fig. 12. While we for the tail, is much smaller than the potential contribution.
can see a logarithmic tail iD+, the bulk viscosity remains With SRD it is possible to tune the relative amplitude of
essentially zero at all times. the relative kinetic and potentidftotationa) contributions,

In summary, the SRD algorithm has passed a very sensmaking it possible to measure the individual contributions
tive test. The amplitude of the long-time tail of the stressdirectly.

-
(=3
®

-
o
&

<V, (), (D>t /(1<v, (0)>)
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VIIl. CONCLUSION lecular chaos approximation, so that correlation effects,

. . which are particularly important for small values of the ratio
In this paper, we have presented a comprehensive analyt|-

. : ; 2 Na, were incorporated into the calculations. This extends
cal and numerical study of the stochastic rotation dynamic - .

: . ; : . e original work of Malevanets and Kapi@] to arbitrary
model for fluid dynamics in two dimensions. Exact

calculations—incorporating both the cell structure and therotation angles and small temperatures, and allowed us to
P 9 btain accurate approximations for the transport coefficients.

. . .. .0
random cell shifts prior to collisions—were presented, and 'tFinaIIy as a very sensitive test of the model, long-time tails

was shown that finite cell size effects persist even at large . . )
. . in the velocity, stress, and heat-flux autocorrelation functions
mean free path. These corrections to the continuum approxi-

mation (which amounts to ignoring contributions from® were analyzed an(_j shown to be in_excellent agreement with
. . : : the results of previous mode-coupling calculations.
and replacing\ £ by 7v in stress correlation functiohsvere
shown to lead to an additional contribution to the shear vis-
cosity which is significant fore=90° in two dimensions.
The resulting expression for the viscosity was shown to be in  Support from the National Science Foundation under
excellent agreement with simulations, thus resolving discrepGrant Nos. DMR-9712134 and DMR-0083219, and the do-
ancies with previous theoretical results. Accurate explicit exnors of The Petroleum Research Fund, administered by the
pressions for all other transport coefficients were derived anéCS, are gratefully acknowledged. T.l. thanks G. Gompper
compared with simulations for a wide range of mean freefor his hospitality at the IFF, Forschungszentruntichy and
paths and rotations angles. Several approximations and a3:R. Dorfman for answering questions about long-time tails.
sumptions were discussed in detail and their validity testedWe also thank E. Tzel, M. Strauss, and F. Tzschichholz for
No assumptions were made regarding the validity of the movaluable discussions.
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